Advertisement

Functional Re-encryption and Collusion-Resistant Obfuscation

  • Nishanth Chandran
  • Melissa Chase
  • Vinod Vaikuntanathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

We introduce a natural cryptographic functionality called functional re-encryption. Informally, this functionality, for a public-key encryption scheme and a function F with n possible outputs, transforms (“re-encrypts”) an encryption of a message m under an “input public key” pk into an encryption of the same message m under one of the n “output public keys”, namely the public key indexed by F(m).

In many settings, one might require that the program implementing the functional re-encryption functionality should reveal nothing about both the input secret key sk as well as the function F. As an example, consider a user Alice who wants her email server to share her incoming mail with one of a set of n recipients according to an access policy specified by her function F, but who wants to keep this access policy private from the server. Furthermore, in this setting, we would ideally obtain an even stronger guarantee: that this information remains hidden even when some of the n recipients may be corrupted.

To formalize these issues, we introduce the notion of collusion-resistant obfuscation and define this notion with respect to average-case secure obfuscation (Hohenberger et al. - TCC 2007). We then provide a construction of a functional re-encryption scheme for any function F with a polynomial-size domain and show that it satisfies this notion of collusion-resistant obfuscation. We note that collusion-resistant security can be viewed as a special case of dependent auxiliary input security (a setting where virtually no positive results are known), and this notion may be of independent interest.

Finally, we show that collusion-resistant obfuscation of functional re-encryption for a function F gives a way to obfuscate F in the sense of Barak et al. (CRYPTO 2001), indicating that this task is impossible for arbitrary (polynomial-time computable) functions F.

Keywords

Encryption Scheme Random Oracle Access Policy Policy Function Homomorphic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adida, B., Wikström, D.: How to Shuffle in Public. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS 2005 (2005)Google Scholar
  3. 3.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bitansky, N., Canetti, R.: On Strong Simulation and Composable Point Obfuscation. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Canetti, R.: Towards Realizing Random Oracles: Hash Functions that Hide All Partial Information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Canetti, R., Dakdouk, R.R.: Obfuscating Point Functions with Multibit Output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions. In: STOC 1998, pp. 131–140 (1998)Google Scholar
  10. 10.
    Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of Hyperplane Membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Chandran, N., Chase, M., Vaikuntanathan, V.: Collusion Resistant Obfuscation and Functional Re-encryption. IACR Eprint Archive, http://eprint.iacr.org/2011/337
  12. 12.
    Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: STOC 2005, pp. 654–663 (2005)Google Scholar
  13. 13.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)Google Scholar
  14. 14.
    Goldwasser, S., Kalai, Y.: On the impossibility of obfuscation with auxiliary input. In: FOCS 2005, pp. 553–562 (2005)Google Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006, pp. 89–98 (2006)Google Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hada, S.: Secure Obfuscation for Encrypted Signatures. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for Cryptographic Purposes. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely Obfuscating Re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lynn, B., Prabhakaran, M., Sahai, A.: Positive Results and Techniques for Obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)Google Scholar
  23. 23.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Scott, M.: Authenticated ID-based key exchange and remote log-in with insecure token and PIN number (2002), http://eprint.iacr.org/2002/164
  25. 25.
    Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Verheul, E.: Evidence that xtr is more secure than supersingular elliptic curve Cryptosystems. J. Cryptology 17(4), 277–296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wee, H.: On obfuscating point functions. In: STOC 2005, pp. 523–532 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nishanth Chandran
    • 1
  • Melissa Chase
    • 1
  • Vinod Vaikuntanathan
    • 2
  1. 1.Microsoft ResearchUSA
  2. 2.University of TorontoCanada

Personalised recommendations