Leakage-Tolerant Interactive Protocols

  • Nir Bitansky
  • Ran Canetti
  • Shai Halevi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

We put forth a framework for expressing security requirements from interactive protocols in the presence of arbitrary leakage. The framework allows capturing different levels of leakage-tolerance of protocols, namely the preservation (or degradation) of security, under coordinated attacks that include various forms of leakage from the secret states of participating components. The framework extends the universally composable (UC) security framework. We also prove a variant of the UC theorem that enables modular design and analysis of protocols even in face of general, non-modular leakage.

We then construct leakage-tolerant protocols for basic tasks, such as secure message transmission, message authentication, commitment, oblivious transfer and zero-knowledge. A central component in several of our constructions is the observation that resilience to adaptive party corruptions (in some strong sense) implies leakage-tolerance in an essentially optimal way.

Keywords

Ideal Functionality Oblivious Transfer Composition Theorem Common Reference String Corrupt Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ADN+10]
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key Encryption in the Bounded-Retrieval Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [ADW09]
    Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage Resilience and the Bounded Retrieval Model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [AGV09]
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. [BCG+11]
    Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.: Program Obfuscation with Leaky Hardware. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 722–739. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. [BCH11]
    Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols (2011), Full version, http://eprint.iacr.org/2011/204
  6. [BGK11]
    Boyle, E., Goldwasser, S., Kalai, Y.T.: Leakage-Resilient Coin Tossing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 181–196. Springer, Heidelberg (2011), http://eprint.iacr.org/2011/291 CrossRefGoogle Scholar
  7. [BKKV10]
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 501–510 (2010)Google Scholar
  8. [Blu86]
    Blum, M.: How to prove a theorem so no one else can claim it. International Congress of Mathematicians, pp. 444–451 (1986)Google Scholar
  9. [BSW11]
    Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  11. [CF01]
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [CFGN96]
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: STOC, pp. 639–648 (1996)Google Scholar
  13. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  14. [DHLAW10a]
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520 (2010)Google Scholar
  15. [DHLAW10b]
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryptography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. [DHP11]
    Damgård, I., Hazay, C., Patra, A.: Leakage resilient secure two-party computation. IACR Cryptology ePrint Archive, 256 (2011), http://eprint.iacr.org/2011/256
  17. [DKL09]
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)Google Scholar
  18. [DP08]
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE Computer Society (2008)Google Scholar
  19. [GJS11]
    Garg, S., Jain, A., Sahai, A.: Leakage-Resilient Zero Knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)Google Scholar
  20. [GMW91]
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in np have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefMATHGoogle Scholar
  21. [GOS06]
    Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. [HL11]
    Halevi, S., Lin, H.: After-the-Fact Leakage in Public-Key Encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. [MR04]
    Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. [NS09]
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. [Pie09]
    Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. [Sta09]
    Standaert, F.-X.: Introduction to side-channel attacks. In: Verbauwhede, I.M.R. (ed.) Secure Integrated Circuits and Systems, pp. 27–44. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nir Bitansky
    • 1
    • 2
  • Ran Canetti
    • 1
    • 2
  • Shai Halevi
    • 3
  1. 1.Tel Aviv UniversityIsrael
  2. 2.Boston UniversityUSA
  3. 3.IBM T.J. Watson Research CenterUSA

Personalised recommendations