Visualisation of Cluster Analysis Results

  • Hans-Joachim Mucha
  • Hans-Georg Bartel
  • Carlos Morales-Merino
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

We present some methods for (multivariate) visualisation of cluster analysis results and cluster validation results. Visualisation is essential for a better understanding of results because it operates at the interface between statisticians and researchers. Without loss of generality, we focus on visualisation of clustering based on pairwise distances. Here, usually one can start with “dimensionless” heatmaps (fingerprints) of proximity matrices. The Excel “Big Grid” spreadsheet is both a distinguished depository for data/proximities and a plotting board for multivariate graphics such as dendrograms, plot-dendrograms, informative dendrograms and discriminant projection plots. Informative dendrograms are ordered binary trees that show additional information such as stability values of the clusters. In this way, graphics can be a very useful and much simpler aid for the reader.

Keywords

Instrumental Neutron Activation Analysis Hierarchical Cluster Analysis Confusion Matrix Individual Cluster Cluster Validation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bartel, H. -G. (2009). Archäometrische Daten römischer Ziegel aus Germania Superior. In H.-J. Mucha, & G. Ritter (Eds.), Classification and clustering: Models, software and applications (Rep. No. 26), WIAS, Berlin, pp. 50–72.Google Scholar
  2. CIA World Factbook. (1999). Population by country. http://www.geographic.org.
  3. Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and Data Analysis,52, 258–271.Google Scholar
  4. Hubert, L. J., & Arabie, P. (1985). Comparing partitions. Journal of Classification,2, 193–218.Google Scholar
  5. Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
  6. Morales-Merino, C., Mucha, H. -J., Bartel, H. -G., & Pernicka, E. (2010). Clay sediments analysis in the troad and its segmentation. In O. Hahn, A. Hauptmann, D. Modarressi-Tehrani, & M. Prange (Eds.), Archäometrie und Denkmalpflege ( Metalla, Sonderheft 3, pp. 122–124). Bochum: Dt. Bergbau-Museum Bochum.Google Scholar
  7. Mucha, H. -J. (2004). Automatic validation of hierarchical clustering. In J. Antoch (Ed.), Proceedings in Computational Statistics, COMPSTAT 2004, 16th Symposium (pp. 1535–1542). Heidelberg: Physica-Verlag.Google Scholar
  8. Mucha, H. -J. (2007). On validation of hierarchical clustering. In R. Decker, H. -J. Lenz (Eds.), Advances in data analysis (pp. 115–122). Berlin: Springer.Google Scholar
  9. Mucha, H. -J. (2009). Cluscorr98 for Excel 2007: Clustering, multivariate visualization, and validation. In H. -J. Mucha, G. Ritter (Eds.), Classification and clustering: Models, software and applications (Rep. No. 26, pp. 14–40). Berlin: WIAS.Google Scholar
  10. Mucha, H. -J., Simon, U., & Brüggemann, R. (2002). Model-based cluster analysis applied to flow cytometry data of phytoplankton (Tech. Rep. No. 5). Berlin: WIAS.Google Scholar
  11. Mucha, H. -J., Bartel, H. -G., & Dolata, J. (2005). Techniques of rearrangements in binary trees (Dendrograms) and applications. Match,54(3), 561–582.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans-Joachim Mucha
    • 1
  • Hans-Georg Bartel
    • 2
  • Carlos Morales-Merino
    • 3
  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)BerlinGermany
  2. 2.Department of ChemistryHumboldt University BerlinBerlinGermany
  3. 3.Curt-Engelhorn-Zentrum ArchäometrieMannheimGermany

Personalised recommendations