Inferring Definite Counterexamples through Under-Approximation

  • Jörg Brauer
  • Axel Simon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7226)

Abstract

Abstract interpretation for proving safety properties summarizes concrete traces into abstract states, thereby trading the ability to distinguish traces for tractability. Given a violation of a safety property, it is thus unclear which trace led to the violation. Moreover, since part of the abstract state is over-approximate, such a trace may not exist at all. We propose a novel backward analysis that is based on abduction of propositional Boolean logic and that only generates legitimate traces that reveal actual defects. The key to tractability lies in modifying an existing projection algorithm to stop prematurely with an under-approximation and by combining various algorithmic techniques to handle loops finitely.

Keywords

Model Check Boolean Function Loop Iteration Abstract Interpretation Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic Theorem Proving for Predicate Abstraction Refinement. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 457–461. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterexample traces. In: POPL, pp. 97–105. ACM (2003)Google Scholar
  3. 3.
    Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., Engler, D.R.: A few billion lines of code later: using static analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)CrossRefGoogle Scholar
  4. 4.
    Brauer, J., King, A.: Automatic Abstraction for Intervals Using Boolean Formulae. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 167–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Brauer, J., King, A.: Transfer Function Synthesis without Quantifier Elimination. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 97–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Veith, H.: Counterexamples Revisited: Principles, Algorithms, Applications. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 208–224. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL, pp. 238–252. ACM (1977)Google Scholar
  11. 11.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Erez, G.: Generating concrete counterexamples for sound abstract interpretation. Master’s thesis, School of Computer Science, Tel-Aviv University, Israel (2004)Google Scholar
  13. 13.
    Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Refining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Gulavani, B.S., Rajamani, S.K.: Counterexample Driven Refinement for Abstract Interpretation. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 474–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Jung, Y., Kim, J., Shin, J., Yi, K.: Taming False Alarms from a Domain-Unaware C Analyzer by a Bayesian Statistical Post Analysis. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 203–217. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Karr, M.: Affine Relationships among Variables of a Program. Acta Informatica 6, 133–151 (1976)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kim, Y., Lee, J., Han, H., Choe, K.-M.: Filtering false alarms of buffer overflow analysis using SMT solvers. Inform. & Softw. Techn. 52(2), 210–219 (2010)CrossRefGoogle Scholar
  18. 18.
    King, A., Lu, L.: Forward versus Backward Verification of Logic Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 315–330. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    King, A., Søndergaard, H.: Inferring Congruence Equations Using SAT. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 281–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Kremenek, T., Engler, D.R.: Z-ranking: Using Statistical Analysis to Counter the Impact of Static Analysis Approximations. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 295–315. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Kroning, D., Groce, A., Clarke, E.: Counterexample Guided Abstraction Refinement Via Program Execution. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 224–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Lahiri, S.K., Bryant, R.E., Cook, B.: A Symbolic Approach to Predicate Abstraction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Lee, W., Lee, W., Yi, K.: Sound Non-statistical Clustering of Static Analysis Alarms. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 299–314. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Maher, M.J.: Abduction of Linear Arithmetic Constraints. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 174–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Maher, M.J., Huang, G.: On Computing Constraint Abduction Answers. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 421–435. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. ACM Trans. Program. Lang. Syst. 29(5) (August 2007)Google Scholar
  28. 28.
    Rival, X.: Understanding the Origin of Alarms in Astrée. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jörg Brauer
    • 1
  • Axel Simon
    • 2
  1. 1.Embedded Software LaboratoryRWTH Aachen UniversityGermany
  2. 2.Informatik 2Technical University MunichGermany

Personalised recommendations