Graph Grammar Based Model for Three Dimensional Multi-physics Simulations

  • Maciej Paszyński
  • Anna Paszyńska
  • Robert Schaefer
Part of the Studies in Computational Intelligence book series (SCI, volume 416)

Abstract

This chapter presents a graph grammar model for the generation and refinements of three dimensional computational meshes as well as for the solution of multi-physics problems over them. It is assumed that the computational meshes consists in tetrahedral and prism elements, and the tetrahedral elements can be further broken into four new tetrahedral and two new pyramid elements, and the prism elements can be further broken into four new prism elements. The graph grammar expresses the generation and adaptation algorithms as a sequence of graph grammar productions. It is assumed that the computational mesh is represented as a graph, and the mesh generation is expressed as a sequence of execution of graph grammar productions, starting from an initial graph with a single node. The graph grammar based algorithm is then utilized to generate the three dimensional mesh representing the simplified model of the human head with internal ear.We concentrate on the solution of the linear elasticity coupled with acoustics (the problem of propagation of acoustic waves over the simplified model of the human head). In the following part of the chapter we introduce the graph grammar productions transforming the computational mesh into a sequence of element frontal matrices, being the input for the multi-frontal solver algorithm. Finally, the overview on the out-of-core solver algorithm is presented, and the numerical results with comparison to the state-of-the art MUMPS solver are described.

Keywords

Human Head Graph Transformation Perfectly Match Layer Tetrahedral Element Computational Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beal, M.W., Shephard, M.S.: A General Topology-Based Mesh Data Structure. International Journal for Numerical Methods in Engineering 40, 1573–1596 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp-Adaptive Finite Element Method. In: Frontiers: Three Dimensional Elliptic and Maxwell Problems, vol. II. Chapmann & Hall / CRC Applied Mathematics & Nonlinear Science (2007)Google Scholar
  3. 3.
    Demkowicz, L., Gatto, P., Kurtz, J., Paszyński, M., Rachowicz, W., Bleszyński, E., Bleszyński, M., Hamilton, M., Champlin, C., Pardo, D.: Modeling of bone conduction of sound in the human head using hp-finite elements: code desing and verification. Computer Methods in Applied Mechanics and Engineering 200(21-22), 1757–1773 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Grabska, E.: Theoretical Concepts of Graphical Modeling. Part One: Realization of CP-Graphs. Machine Graphics and Vision 2(1), 3–38 (1993)Google Scholar
  5. 5.
    Grabska, E.: Theoretical Concepts of Graphical Modeling. Part Two: CP-Graph Grammars and Languages. Machine Graphics and Vision 2(2), 149–178 (1993)Google Scholar
  6. 6.
    Grabska, E., Hliniak, G.: Structural Aspects of CP-Graph Languages. Schedae Informaticae 5, 81–100 (1993)Google Scholar
  7. 7.
    Paszyński, M., Pardo, D., Paszyńska, A.: Parallel multi-frontal solver for p adaptive finite element modeling of multi-physics computational problems. Journal of Computational Science 1, 48–54 (2010)CrossRefGoogle Scholar
  8. 8.
    Flasiński, M., Schaefer, R.: Quasi context sensitive graph grammars as a formal model of FE mesh generation. Computer-Assisted Mechanics and Engineering Science 3, 191–203 (1996)Google Scholar
  9. 9.
    Michler, C., Demkowicz, L., Kurtz, J., Pardo, D.: Improving the performance of perfectly matched layers ny means of hp-adaptivity. ICES-Report 06-17, The University of Texas at Austin (2006)Google Scholar
  10. 10.
    Olkusnik, R.: Edytor graficzny do projektowania gramatyk grafowych. Msc Thesis, Jagiellonian University, Krakow (1996)Google Scholar
  11. 11.
    Paszyński, M., Pardo, D., Torres-Verdin, C., Demkowicz, L., Calo, V.: A Parallel Direct Solver for Self-Adaptive hp Finite Element Method. Journal of Parall and Distributed Computing 70, 270–281 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Paszyński, M., Schaefer, R.: Graph grammar driven partial differential eqautions solver. Concurrency and Computations: Practise and Experience 22(9), 1063–1097 (2010)Google Scholar
  13. 13.
    Paszyński, M., Pardo, D., Paszyńska, A., Demkowicz, L.: Out-of-core multi-frontal solver for multi-physics hp adaptive problems. Procedia Computer Science 4, 1788–1797 (2011)CrossRefGoogle Scholar
  14. 14.
    Paszyńska, A., Paszyński, M., Grabska, E.: Graph Transformations for Modeling hp-Adaptive Finite Element Method with Mixed Triangular and Rectangular Elements. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 875–884. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Paszyńska, A., Paszyński, M., Grabska, E.: Graph Transformations for Modeling hp-Adaptive Finite Element Method with Triangular Elements. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 604–613. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Paszyński, M., Paszyńska, A.: Graph Transformations for Modeling Parallel hp-Adaptive Finite Element Method. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1313–1322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit An Object-Oriented Approach To 3D Graphics, 3rd edn. Kitware, Inc., http://www.kitware.com
  18. 18.
    Spicher, A., Michel, O., Giavitto, J.-L.: Declarative Mesh Subdivision Using Topological Rewriting in MGS. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 298–313. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Szymczak, A., Paszyński, M.: Graph grammar based Petri net controlled direct solver algorithm. Computer Science 11, 65–79 (2010)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Maciej Paszyński
    • 1
  • Anna Paszyńska
    • 2
  • Robert Schaefer
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland
  2. 2.Jagiellonian UniversityKrakówPoland

Personalised recommendations