Requirements and Solutions for a More Knowledgeable User-Model Dialogue in Applied Simulation

  • Gaby Neumann
  • Juri Tolujew
Part of the Studies in Computational Intelligence book series (SCI, volume 416)


Generally, it is pretty clear and widely accepted that the human actor plays a significant role in any simulation project-although in recent years some authors proclaimed a revival of ideas for a human-free simulation at least related to distinct parts of a simulation study. Therefore, the paper aims to provide an overview on needs and challenges in model-user interaction. Furtheron, approaches, methods and tools are presented that support the user in bringing in his/her knowledge in all phases of a simulation project from model building via understanding a model and using it for experimentation to correctly interpreting simulation outcome. In addition to this, concepts are introduced and demonstrated for more flexible, but generic tools supporting comfortable simulation output analysis in a context beyond pre-defined simulation goals. With this the paper wants to contribute to bringing simulation tools and algorithms on one side and the simulation user-novice and expert-on the other closer together in order to achieve a true dialogue and exchange within a discrete event simulation supportive infrastructure.


Simulation Model Knowledge Management Domain Expert Simulation Output Winter Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural language interfaces to databases—an introduction. Natural Language Engineering 1(1), 29–81 (1995)CrossRefGoogle Scholar
  2. 2.
    Balci, O., Nance, R.: Simulation model development environments: A research prototype. Journal of the Operational Research Society 38(8), 753–763 (1987)Google Scholar
  3. 3.
    Balci, O., Ormsby, W.F., Carr, J.T.I., Saadi, S.D.: Planning for verification, validation, and accreditation of modeling and simulation applications. In: Proc. Winter Simulation Conference, pp. 829–839 (2000)Google Scholar
  4. 4.
    Beckman, T.J.: The current state of knowledge management. In: Liebowitz, J. (ed.) Knowledge Management Handbook. CRC Press, Boca Raton (1999)Google Scholar
  5. 5.
    Brade, D.: Enhacing modelling and simulation accreditation by structuring verification and validation results. In: Proc. Winter Simulation Conference, pp. 840–848 (2000)Google Scholar
  6. 6.
    Brandt, M., Ehrenberg, D., Althoff, K., Nick, M.: Ein fallbasierter ansatz für die computergestützte nutzung von erfahrungswissen bei der projektarbeit (a case-based approach for computer-based use of experience-based knowledge in projects). In: Proc. 5. Internationale Tagung Wirtschaftsinformatik (2001) (in German)Google Scholar
  7. 7.
    Bruzzone, A., Madeo, F., Tarone, F.: Modelling country reconstruction based on civil military cooperation. In: Proc. of European Modeling and Simulation Symposium, pp. 315–322 (2010)Google Scholar
  8. 8.
    Cuske, C., Dickopp, T., Seedorf, S.: JOmtoRisk. An ontology-based Platform for Knowledge-based Simulation Modeling in Financial Risk Management. In: Feliz-Teixeira, J.M., Brito, A.E.C. (eds.) Proc. European Simulation and Modelling Conference, pp. 79–86 (2005)Google Scholar
  9. 9.
    Helms, C., Strothotte, T.: Oracles and viewpoint descriptions for object flow investigation. In: Proc. of the 1st EUROSIM Congress on Modelling and Simulation, pp. 47–53 (1992)Google Scholar
  10. 10.
    Highland, H.J.: A taxonomy approach to simulation model documentation. ACM SIGSIM Simulation Digest 10(3), 19–23 (1979)CrossRefGoogle Scholar
  11. 11.
    Kemper, P., Tepper, C.: Automated trace analysis of discrete-event system models. IEEE Transactions on Software Engineering 35(2), 195–208 (2009)CrossRefGoogle Scholar
  12. 12.
    Nance, R.E., Roth, P.F.: Documentation of simulation models: prospects and problems. In: Proc. Winter Simulation Conference, pp. 722–723 (1997)Google Scholar
  13. 13.
    Neumann, G.: Projektwissen in der Logistiksimulation erschließen und bewahren: Auf dem Weg zu einer neuen Dokumentationskultur (gaining and storing project knowledge in logistics simulation: on the way towards a new documentation culture). In: Proc. of Simulation in Production and Logistics, pp. 341–350 (2006) (in German)Google Scholar
  14. 14.
    Neumann, G.: The role of knowledge throughout the simulation lifecycle: what does a simulation model know? In: Proc. of the 6th EUROSIM Congress on Modelling and Simulation (2007)Google Scholar
  15. 15.
    Neumann, G., Page, B.: Case study to compare modelling and simulation approaches of different domain experts. In: Proc. of I3M 2006—International Mediterranean Modelling Multiconference, pp. 517–522 (2006)Google Scholar
  16. 16.
    Neumann, G., Ziems, D.: Logistics simulation: Methodology for problem solving and knowledge acquisition. In: Proc. of the 6th Multiconference on Systemics, Cybernetics and Informatics, pp. 357–362 (2002)Google Scholar
  17. 17.
    Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press (1995)Google Scholar
  18. 18.
    Ören, T.I.: A paradigm for artificial intelligence in software engineering. Advances in Artificial Intelligence in Software Engineering 1, 1–55 (1990)Google Scholar
  19. 19.
    Ören, T.I.: Body of Knowledge of Modeling and Simulation (M&SBOK): Pragmatic aspects. In: Proc. European Modelling and Simulation Symposium (2006)Google Scholar
  20. 20.
    Oscarsson, J., Urenda Moris, M.: Best modeling methods: documentation of discrete event simulation models for manufacturing system life cycle simulation. In: Proc. Winter Simulation Conference, pp. 1073–1078 (2002)Google Scholar
  21. 21.
    Page, B., Kreutzer, W.: The Java Simulation Handbook—Simulating Discrete Event Systems in UML and Java. Shaker, Aachen (2005)Google Scholar
  22. 22.
    Popescu, A.M., Armanasu, A., Etzioni, O.: Modern natural language interfaces to databases: Composing statistical parsing with semantic traceability. In: Proc. of COLING (2004)Google Scholar
  23. 23.
    Rego Monteil, N., del Rio Vilas, D., Crespo Pereira, D., Rios Prado, R.: A simulation-based ergonomic evaluation for the operational improvement of the slate splitters work. In: Proc. of European Modeling and Simulation Symposium, pp. 191–200 (2010)Google Scholar
  24. 24.
    Saanen, Y., van Valkengoed, M.: Comparison of three automated stacking alternatives by means of simulation. In: Proc. Winter Simulation Conference, pp. 1567–1576 (2005)Google Scholar
  25. 25.
    Shneiderman, B.: Leonardo’s Laptop: Human Needs and the New Computing Technologies. The MIT Press, Cambridge (2002)Google Scholar
  26. 26.
    Spieckermann, S., Lehmann, A., Rabe, M.: Verifikation und Validierung: Überlegungen zu einer integrierten Vorgehensweise (validation and verification: towards an integrated procedure). In: Proc. 11th Conference Simulation in Production and Logistics, pp. 263–274 (2004) (in German)Google Scholar
  27. 27.
    Tolujew, J.: Werkzeuge des Simulationsexperten von morgen (tools of the simulation expert of tomorrow. In: Proc. of Simulation and Animation, pp. 201–210 (1997) (in German)Google Scholar
  28. 28.
    Tolujew, J., Reggelin, T., Sermpetzoglou, C.: Simulation und Interpretation von Datenströmen in logistischen Echtzeitsystemen (simulation and interpretation of data streams in logistics real-time systems). In: Engelhardt-Nowitzki, C., Nowitzki, O., Krenn, B. (eds.) Management komplexer Materialflüsse mittels Simulation. State-of-the-Art und innovative Konzepte. Leobener Logistik Cases, pp. 215–232. Deutscher Universitäts-Verlag, Wiesbaden (2007)Google Scholar
  29. 29.
    Wustmann, D., Vasyutynskyy, V., Schmidt, T.: Ansätze zur automatischen Analyse und Diagnose von komplexen Materialflusssystemen (approaches for automatic analysis and diagnosis of complex material flow systems). In: Proc. of the 5th Expert colloquium of WGTL—Wissenschaftliche Gesellschaft für Technische Logistik, pp. 1–19 (2009) (in German)Google Scholar
  30. 30.
    Zhou, M., Son, Y.J., Chen, Z.: Knowledge representation for conceptual simulation modeling. In: Proc. of Winter Simulation Conference, pp. 450–458 (2004)Google Scholar
  31. 31.
    Zülch, G.: Modelling and simulation of human decision-making in manufacturing systems. In: Proc. of Winter Simulation Conference, pp. 947–953 (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Technical University of Applied SciencesWildauGermany
  2. 2.Fraunhofer Institute for Factory Operation and Automation IFFMagdeburgGermany

Personalised recommendations