Advertisement

Control Systems

  • Octavian Iordache
Part of the Understanding Complex Systems book series (UCS)

Abstract

Self-evolvability aspects for autonomous robots and high dimensional automata are illustrated.

Self-configuring schemas for self-evolvable control are correlated to general PSM frameworks. Entropy criteria prove to be useful to evaluate control architectures.

Different types of interconnections are reviewed and associated to wave equation, WE, solutions.

Keywords

Regular Graph Autonomous Control Evaluation Step Logistic Objective Dimensional Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, R.: Behaviour-based robotics. Bradford Book, MIT Press (1998)Google Scholar
  2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  3. Bertsekas, D.P., Ozveren, C., Stamoulis, G.D., Tseng, P., Tsitsiklis, J.N.: Optimal Communication Algorithms for Hypercubes. J. Parallel Distrib. Comput. 11, 263–275 (1991)CrossRefGoogle Scholar
  4. Dawidowicz, E.: Intelligent Agent Technology in Command and Control Environment. In: Proceedings of 1999 Command and Control Research and Technology Symposium, Newport, Rhode Island, June 29-July 1 (1999)Google Scholar
  5. Dawidowicz, E.: Performance Evaluation of Network Centric Warfare Oriented Intelligent Systems. In: Proceedings of PERMIS 2001, Gaithersburg, MD (2002)Google Scholar
  6. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems. Technical Report CS-TR-1018. School of Computing Science. University of Newcastle (2007)Google Scholar
  7. Loguinov, D., Casas, J., Wang, X.: Graph-Theoretic Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience. IEEE/ACM Transactions on Networking 13(5), 1107–1120 (2005)CrossRefGoogle Scholar
  8. Luzeaux, D., Dalgalarrondo, A., Dufourd. D.: Autonomous small robots for military applications. In: Proceedings of UVS Tech 2001, Bruxelles, Belgique (2001)Google Scholar
  9. Maturana, H., Varela, F.: The tree of knowledge: The biological roots of human understanding. Shambala, Boston (1992)Google Scholar
  10. Oh, E., Chen, J.: Parallel routing in hypercube net-works with faulty nodes. In: IEEE International Conference on Parallel and Distributed Systems (ICPADS 2001), pp. 338–345 (July 2001)Google Scholar
  11. Patil, S., Srinivasa, S., Mukherjee, S., Rachakonda, A.R., Venkatasubramanian, V.: Breeding Diameter-Optimal Topologies for Distributed Indexes. Complex Systems 18(2), 175–194 (2009)MathSciNetzbMATHGoogle Scholar
  12. Philipp, T., Böse, F., Windt, K.: Evaluation of autonomously controlled logistic processes. In: Proceedings of 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, pp. 347–352 (2006)Google Scholar
  13. Schlosser, M.T., Sintek, M., Decker, S., Nejdl, W.: HyperCuP - Hypercubes, Ontologies, and Efficient Search on Peer-to-Peer Networks. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS (LNAI), vol. 2530, pp. 112–124. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. Sanz, R., Lopez, I., Bermejo-Alonso, J., Chinchilla, R., Conde, R.: Self-X: The control within. In: Proceedings of IFAC World Congress 2005 (2005)Google Scholar
  15. Sanz, R., López, I., Rodríguez, M., Hernández, C.: Principles for consciousness in integrated cognitive control. Neural Networks 20(9), 938–946 (2007)CrossRefGoogle Scholar
  16. Sanz, R., Hernández, C., Sánchez, G.: Consciousness, meaning and the future phenomenology. In: Machine Consciousness 2011: Self, Integration and Explanation - AISB, York, UK (2011)Google Scholar
  17. Windt, K., Philipp, T., Böse, F.: Complexity Cube for the Characterization of Complex Production Systems. Int. J. Comput. Integr. Manuf. 21, 195–200 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.PolystochasticMontrealCanada

Personalised recommendations