Self-Evolvability for Cognitive Systems

Part of the Understanding Complex Systems book series (UCS)

Abstract

The post-formal and closure aspects for cognitive developmental stages, geometry of logic, and relational complexity theories are presented.

Conceptual and computational frameworks are presented as polytopic cognitive architectures.

Physarum computing capabilities are evaluated.

Keywords

Cognitive System Slime Mold Transitive Inference Analogical Inference Class Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters 17, 455–467 (2007)MathSciNetCrossRefGoogle Scholar
  2. Afshar, M., Dartnell, C., Luzeaux, D., Sallantin, J., Tognetti, Y.: Aristotle’s Square Revisited to Frame Discovery Science. Journal of Computers 2(5), 54–66 (2007)CrossRefGoogle Scholar
  3. Baars, B.J.: A cognitive theory of consciousness. Cambridge University Press, Cambridge (1988)Google Scholar
  4. Baars, B.J.: The conscious access hypothesis: origins and recent evidence. Trends in Cognitive Science 6, 47–52 (2002)CrossRefGoogle Scholar
  5. Baars, B.J., Franklin, S.: Consciousness is computational: The LIDA model of Global Workspace Theory. International Journal of Machine Consciousness 1(1), 23–32 (2009)CrossRefGoogle Scholar
  6. Ben-Amram, A.M.: What is a Pointer machine? SIGACT News, ACM Special Interest Group on Automata and Computability Theory 26 (1995)Google Scholar
  7. Ben-Amran, A.M.: Pointer machines and pointer algorithms: an annotated bibliography (1998), http://www2.mta.ac.il/amirben
  8. Birney, D.P., Halford, G.S., Andrews, G.: Measuring the influence of complexity on relational reasoning: The development of the Latin Square Task. Educational and Psychological Measurement 66, 146–171 (2006)MathSciNetCrossRefGoogle Scholar
  9. Bringsjord, S., Taylor, J., Wojtowicz, R., Arkoudas, K., van Heuvlen, B.: Piagetian Roboethics via Category Theory: Moving Beyond Mere Formal Operations to Engineer Robots Whose Decisions are Guaranteed to be Ethically Correct. In: Anderson, M., Anderson, S. (eds.) Machine Ethics. Cambridge University Press, Cambridge (2010)Google Scholar
  10. Case, R.: The mind’s staircase: Exploring the conceptual underpinnings of children’s thought and knowledge. Erlbaum, Hillsdale (1992)Google Scholar
  11. Dehaene, S., Sergent, C., Changeux, J.P.: A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc. Natl. Acad. Sci. USA 100, 8520–8525 (2003)CrossRefGoogle Scholar
  12. Doumas, L.A.A., Hummel, J.E., Sandhofer, C.M.: A theory of the discovery and predication of relational concepts. Psychological Review 115, 1–43 (2008)CrossRefGoogle Scholar
  13. Franklin, S.: The LIDA architecture: Adding new modes of learning to an intelligent, autonomous, software agent. In: Proc. of the Int. Conf. on Integrated Design and Process Technology. Society for Design and Process Science, San Diego (2006)Google Scholar
  14. Franklin, S., Patterson, F.G.J.: The LIDA Architecture: Adding New Modes of Learning to an Intelligent, Autonomous, Software Agent. In: IDPT 2006 Proceedings Integrated Design and Process Technology. Society for Design and Process Science (2006)Google Scholar
  15. Halford, G.S.: Children’s understanding: The development of mental models. Erlbaum, Hillsdale (1993)Google Scholar
  16. Halford, G.S., Wilson, W.H., Phillips, S.: Processing capacity defined by relational complexity. Implications for comparative, developmental and cognitive psychology. Behavioural and Brain Sciences 21(6), 803–831 (1998a)Google Scholar
  17. Halford, G.S., Wilson, W.H., Phillips, W.: Relational complexity metric is effective when assessments are based on actual cognitive processes. Behavioral Brain Sciences 21(6), 803–864 (1998b)Google Scholar
  18. Halford, G.S., Wilson, W.H., Phillips, S.: Relational knowledge: the foundation of higher cognition. Trends in Cognitive Science 14(11), 497–505 (2010)CrossRefGoogle Scholar
  19. Hummel, J.E., Choplin, J.M.: Toward an integrated account of reflexive and reflective reasoning. In: Gleitman, L.R., Joshi, A.K. (eds.) Proceedings of the Twenty Second Annual Conference of the Cognitive Science Society, pp. 232–237. LEA, Mahwah (2000)Google Scholar
  20. Hummel, J.E., Holyoak, K.J.: Distributed representation of structure. A theory of analogical access and mapping. Psychological Review 104, 427–466 (1997)Google Scholar
  21. Inhelder, B., Piaget, J.: The Growth of Logical Thinking from Childhood to Adolescence. Basic Books, New York (1958)CrossRefGoogle Scholar
  22. Luzeaux, D., Sallantin, J., Dartnell, C.: Logical extensions of Aristotle’s square. Logica Universalis 2, 167–187 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. Moretti, A.: The Geometry of Logical Opposition. PhD. Thesis. University of Neuchâtel, Switzerland (2009)Google Scholar
  24. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Research in Microbiology 152(9), 767–770 (2001)CrossRefGoogle Scholar
  25. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophysical Chemistry 107(1), 1–5 (2004)CrossRefGoogle Scholar
  26. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organizm. Nature 407(6803), 470–470 (2000)CrossRefGoogle Scholar
  27. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry 92(1-2), 47–52 (2001)CrossRefGoogle Scholar
  28. Philips, S., Wilson, W.H., Hadford, G.: What do transitive inference and class inclusion have in common? categorical (co)products and cognitive development. PLoS Comput. Biol. 5(12), e1000599 (2009)MathSciNetCrossRefGoogle Scholar
  29. Philips, S., Wilson, W.H.: Categorial compositionality: A category theory explanation for the systematicity of human cognition. PLoS Comput. Biol. 6(7), 1–14 (2010)CrossRefGoogle Scholar
  30. Piaget, J.: Genetic Epistemology. Columbia University Press, New York (1970)Google Scholar
  31. Piaget, J.: The construction of Reality in the Child. Ballantine Books, New York (1971)Google Scholar
  32. Piaget, J.: Introduction a l’epistemologie genetique. La pensee Mathematique. Presses Universitaires de France, Paris (1973)Google Scholar
  33. Schoenhage, A.: Storage modification machines. SIAM J. Comp. 9, 490–508 (1980)MATHCrossRefGoogle Scholar
  34. Shanahan, M.: A cognitive architecture that combines internal simulation with a global workspace. Consciousness and Cognition 15, 433–449 (2006)CrossRefGoogle Scholar
  35. Shanahan, M.: A spiking neuron model of cortical broadcast and competition. Conscious Cogn. 17(1), 288–303 (2008)CrossRefGoogle Scholar
  36. Snaider, J., McCall, R., Franklin, S.: The LIDA Framework as a General Tool for AGI. In: The Fourth Conference on Artificial General Intelligence, Mountain View, CA (2011)Google Scholar
  37. Tsuda, S., Zauner, K.-P., Gunji, Y.-P.: Robot Control: From Silicon Circuitry to Cells. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 20–32. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. Wilson, H.W., Halford, G.S.: Robustness of Tensor Product networks using distributed representations. In: Proceedings of the Fifth Australian Conference on Neural Networks (ACNN 1994), pp. 258–261 (1994)Google Scholar
  39. Yang, Y., Bringsjord, S.: Mental Metalogic: A New, Unifying Theory of Human and Machine Reasoning. Erlbaum, Mahwah (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.PolystochasticMontrealCanada

Personalised recommendations