Advertisement

Design of Experiments

  • Octavian Iordache
Part of the Understanding Complex Systems book series (UCS)

Abstract

Latin squares and hypercubes are obtained as solutions of the wave equation.

Multivariate modeling potential for evolvable designs of experiments is evaluated.

The general PSM framework is presented as flexible guideline for a large variety of designs of experiments.

Case studies refer to pharmaceutical pipeline, to drug discovery and development and to printed circuits quality evaluations. New informational entropy criteria have been applied for 2-phenylindole derivatives library design.

Keywords

Surface Finish Entropy Production Convection Model Behavior Space Valuation Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashdown, M.L.: Timed ablation of regulatory CD4 +  T cells can prevent murine AIDS progression. J. Immunol. 172, 4917–4925 (2004)Google Scholar
  2. Bailey, R.A.: Efficient semi-Latin squares. Statistica Sinica 2, 413–437 (1992)MathSciNetzbMATHGoogle Scholar
  3. Basak, C.S., Zhu, Q., Mills, D.: Prediction of anticancer activiyty of 2-phenylindoles: Comparative molecular field analysis versus ridge regression using mathemathical descriptors. Acta Chim. Slov. 57, 541–550 (2010)Google Scholar
  4. Cioppa, T.M., Lucas, T.W.: Efficient Nearly Orthogonal and Space-filling Latin Hypercubes. Technometrics 49(1), 45–55 (2007)MathSciNetCrossRefGoogle Scholar
  5. Coventry, B.J., Ashdown, M.L., Quinn, M.A., Markovic, S.N., Yatomi-Clarke, S.L., Robinson, A.P.: CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? Journal of Translational Medicine 7(102), 1–8 (2009)Google Scholar
  6. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays. Theory and Applications. Springer, New York (1999)zbMATHGoogle Scholar
  7. Iordache, O.: Evolvable Designs of Experiments Applications for Circuits. J. Wiley VCH, Weinheim (2009)CrossRefGoogle Scholar
  8. Iordache, O.: Polystochastic Models for Complexity. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  9. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51(3), 455–500 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Lohr, S.L.: Hasse Diagram in Statistical Consulting and Teaching. The American Statistician 39(4), 376–381 (1995)Google Scholar
  11. Lovell, C., Jones, G., Gunn, S., Zauner, K.-P.: Autonomous Experimentation: Active Learning for Enzyme Response Characterisation. In: JMLR: Workshop and Conference Proceedings, vol. 16, pp. 141–155 (2011)Google Scholar
  12. Lovel, C.J., Zauner, K.-P.: Towards algorithms for autonomous experimentation. In: Naef, F., Galliot, B., Nehaniv, C. (eds.) Proceedings of the 8th International Conference on Information Processing in Cells and Tissues (IPCAT 2009), pp. 150–152 (2009)Google Scholar
  13. Matsumaru, N., Centler, F., Zauner, K.-P., Dittrich, P.: Self-Adaptive Scouting—Autonomous Experimentation for Systems Biology. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS (LNAI), vol. 3005, pp. 52–62. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. Nguyen, N.-K.: A new class of orthogonal Latin hypercubes (2008)Google Scholar
  15. Taguchi, G.: Introduction to Quality Engineering: Design Quality into Products and Processes Tokyo. Asian Productivity Organization (1986)Google Scholar
  16. Taguchi, G.: Systems of Experimental Design, vol. 1 & 2. Unipub/Kraus International, White Plains (1987)Google Scholar
  17. Wood, J., Rose, V.S.: Method of designing chemical substances. PCT WO 99/26901 (1999)Google Scholar
  18. Woodcock, J., Woosley, R.: The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 59, 1–12 (2008)CrossRefGoogle Scholar
  19. Ye, K.Q.: Orthogonal Latin hypercubes and their application in computer experiments. J. Amer. Statist. Assoc. 93, 1430–1439 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.PolystochasticMontrealCanada

Personalised recommendations