Quantitative Assessment of Estimation Approaches for Mining over Incomplete Data in Complex Biomedical Spaces: A Case Study on Cerebral Aneurysms

  • Jesus Bisbal
  • Gerhard Engelbrecht
  • Alejandro F. Frangi
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 154)

Abstract

Biomedical data sources are typically compromised by fragmented data records. This incompleteness of data reduces the confidence gained from the application of mining algorithms. In this paper an approach to approximate missing data items is presented, which enables data mining processes to be applied on a larger data set. The proposed framework is based on a case-based reasoning infrastructure which is used to identify those data entries that are more appropriate to support the approximation of missing values. Moreover, the framework is evaluated in the context of a complex biomedical domain: intracranial cerebral aneurysms. The dataset used includes a wide diversity of advanced features obtained from clinical data, morphological analysis, and hemodynamic simulations. The best feature estimations achieved errors of only 7%. There are, however, large differences between the estimation accuracy achieved with different features.

Keywords

Estimation Approach Mining Algorithm Cerebral Aneurysm Similarity Threshold Uncertain Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benkner, S., Arbona, A., et al.: @neurIST: Infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services. IEEE Trans. Inf. Tech. Biomed. 14, 1365–13270 (2010)CrossRefGoogle Scholar
  2. 2.
    Bisbal, J., Engelbrecht, G., Villa-Uriol, M.C., Frangi, A.F.: Prediction of Cerebral Aneurysm Rupture Using Hemodynamic, Morphologic and Clinical Features: A Data Mining Approach. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 59–73. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    de Waal, T., Pannekoek, J., Scholtus, S.: Handbook of Statistical Data Editing and Imputation. Wiley (2011)Google Scholar
  4. 4.
    Hawarah, L., Simonet, A., Simonet, M.: Dealing with missing values in a probabilistic decision tree during classification. In: Zighed, D.A., Tsumoto, S., Ras, Z.W., Hacid, H. (eds.) Mining Complex Data. SCI, vol. 165, pp. 55–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley (2002)Google Scholar
  6. 6.
    Magnani, M., Montesi, D.: Uncertainty in Decision Tree Classifiers. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 250–263. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Parthasarathy, S., Aggarwal, C.: On the use of conceptual reconstruction for mining massively incomplete data sets. IEEE Transactions on Knowledge and Data Engineering 15(6), 1512–1521 (2003)CrossRefGoogle Scholar
  8. 8.
    Qin, B., Xia, Y., Li, F.: DTU: A Decision Tree for Uncertain Data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 4–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Qin, B., Xia, Y., Li, F.: A bayesian classifier for uncertain data. In: Proc. 2010 ACM Symp. Applied Comp., pp. 1010–1014 (2010)Google Scholar
  10. 10.
    Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge University Press (2011)Google Scholar
  11. 11.
    Tsang, S., Kao, B., Yip, K., Ho, W.S., Lee, S.D.: Decision trees for uncertain data. IEEE Transactions on Knowledge and Data Engineering 23, 64–78 (2011)CrossRefGoogle Scholar
  12. 12.
    Valencia, C., Villa-Uriol, M.C., Pozo, J.M., Frangi, A.F.: Morphological descriptors as rupture indicators in middle cerebral artery aneurysms. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6046–6049 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jesus Bisbal
    • 1
  • Gerhard Engelbrecht
    • 2
    • 3
  • Alejandro F. Frangi
    • 2
    • 3
  1. 1.DTICUniversitat Pompeu FabraBarcelonaSpain
  2. 2.CISTIBUniversitat Pompeu FabraBarcelonaSpain
  3. 3.CIBER-BBNUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations