Exon: A Web-Based Software Toolkit for DNA Sequence Analysis

  • Diogo PratasEmail author
  • Armando J. Pinho
  • Sara P. Garcia
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 154)


Recent advances in DNA sequencing methodologies have caused an exponential growth of publicly available genomic sequence data. By consequence, many computational biologists have intensified studies in order to understand the content of these sequences and, in some cases, to search for association to disease. However, the lack of public available tools is an issue, specially when related to efficiency and usability. In this paper, we present Exon, a user-friendly solution containing tools for online analysis of DNA sequences through compression based profiles.


web-based software toolkit DNA sequence analysis DNA compression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allison, L., Stern, L., Edgoose, T., Dix, T.I.: Sequence complexity for biological sequence analysis. Computers & Chemistry 24, 43–55 (2000)Google Scholar
  2. 2.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990); doi:10.1006/jmbi.1990.9999Google Scholar
  3. 3.
    Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. In: Proc. of the Data Compression Conf., DCC 2007, Snowbird, Utah, pp. 43–52 (2007)Google Scholar
  4. 4.
    Crochemore, M., Vrin, R.: Zones of low entropy in genomic sequences. Computers & Chemistry, 275–282 (1999)Google Scholar
  5. 5.
    Dix, T.I., Powell, D.R., Allison, L., Bernal, J., Jaeger, S., Stern, L.: Comparative analysis of long DNA sequences by per element information content using different contexts. BMC Bioinformatics 8(suppl. 2), S10 (2007); doi:10.1186/1471-2105-8-S2-S10Google Scholar
  6. 6.
    Gusev, V.D., Nemytikova, L.A., Chuzhanova, N.A.: On the complexity measures of genetic sequences. Bioinformatics 15(12), 994–999 (1999)CrossRefGoogle Scholar
  7. 7.
    Nan, F., Adjeroh, D.: On the complexity measures for biological sequences. In: Proc. of the IEEE Computational Systems Bioinformatics Conference, CSB 2004, Stanford, CA (2004)Google Scholar
  8. 8.
    Pinho, A.J., Ferreira, P.J.S.G., Neves, A.J.R., Bastos, C.A.C.: On the representability of complete genomes by multiple competing finite-context (Markov) models. PLoS ONE 6(6), e21, 588 (2011); doi:10.1371/journal.pone.0021588Google Scholar
  9. 9.
    Pinho, A.J., Pratas, D., Ferreira, P.J.S.G.: Bacteria DNA sequence compression using a mixture of finite-context models. In: Proc. of the IEEE Workshop on Statistical Signal Processing, Nice, France (2011)Google Scholar
  10. 10.
    Pinho, A.J., Pratas, D., Ferreira, P.J.S.G., Garcia, S.P.: Symbolic to numerical conversion of DNA sequences using finite-context models. In: Proc. of the 19th European Signal Processing Conf., EUSIPCO 2011, Barcelona, Spain (2011)Google Scholar
  11. 11.
    Pirhaji, L., Kargar, M., Sheari, A., Poormohammadi, H., Sadeghi, M., Pezeshk, H., Eslahchi, C.: The performances of the chi-square test and complexity measures for signal recognition in biological sequences. Journal of Theoretical Biology 251(2), 380–387 (2008)CrossRefGoogle Scholar
  12. 12.
    Pratas, D., Bastos, C.A.C., Pinho, A.J., Neves, A.J.R., Matos, L.: DNA synthetic sequences generation using multiple competing Markov models. In: Proc. of the IEEE Workshop on Statistical Signal Processing, Nice, France (2011)Google Scholar
  13. 13.
    Pratas, D., Pinho, A.J.: Compressing the human genome using exclusively Markov models. In: Proc. of the 5th Int. Conf. on Practical Applications of Computational Biology & Bioinformatics, PACBB 2011. AISC, vol. 93, pp. 213–220 (2011)Google Scholar
  14. 14.
    Roy, A., Carroll, M., Kass, D., Nguyen, S., Salem, A., Batzer, M., Deininger, P.: Recently integrated human alu repeats: finding needles in the haystack. Genetica 107(1-3), 149–161 (1999)CrossRefGoogle Scholar
  15. 15.
    Troyanskaya, O.G., Arbell, O., Koren, Y., Landau, G.M., Bolshoy, A.: Sequence complexity profiles of prokaryotic genomic sequences: a fast algorithm for calculating linguistic complexity. Bioinformatics 18(5), 679–688 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diogo Pratas
    • 1
    Email author
  • Armando J. Pinho
    • 1
  • Sara P. Garcia
    • 1
  1. 1.Signal Processing Lab, IEETA / DETIUniversity of AveiroAveiroPortugal

Personalised recommendations