A Cellular Automaton Model for Tumor Growth Simulation

  • Ángel Monteagudo
  • José Santos
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 154)


We used cellular automata for simulating tumor growth in a multicellular system. Cells have a genome associated with different cancer hallmarks, indicating if those are activated as consequence of mutations. The presence of the cancer hallmarks defines cell states and cell mitotic behaviors. These hallmarks are associated with a series of parameters, and depending on their values and the activation of the hallmarks in each of the cells, the system can evolve to different dynamics. We focus here on how the cellular automata simulating tool can provide a model of the tumor growth behavior in different conditions.


Cellular Automaton Telomere Length Cellular Automaton Mitotic Division Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artificial Life 12(4), 617–634 (2006)CrossRefGoogle Scholar
  2. 2.
    Adami, C.: Introduction to artificial life. Telos-Springer Verlag (1998)Google Scholar
  3. 3.
    Adamopoulos, A.V.: CA2: In silico simulations of cancer growth using cellular automata. WSEAS Transactions on Systems 4(9), 1467–1473 (2005)MathSciNetGoogle Scholar
  4. 4.
    Bankhead, A., Heckendorn, R.B.: Using evolvable genetic cellular automata to model breast cancer. Genet. Program Evolvable Mach. 8, 381–393 (2007)CrossRefGoogle Scholar
  5. 5.
    Gerlee, P., Anderson, A.R.A.: An evolutionary hybrid cellular automaton model of solid tumour growth. Journal of Theoretical Biology 246(4), 583–603 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gevertz, J.L., Gillies, G.T., Torquato, S.: Simulating tumor growth in confined heterogeneous environments. Phys. Biol. 5 (2008)Google Scholar
  7. 7.
    Gibbs, W.W.: Untangling the roots of cancer. Scientific American 289, 56–65 (2003)CrossRefGoogle Scholar
  8. 8.
    Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)CrossRefGoogle Scholar
  9. 9.
    Ilachinski, A.: Cellular automata. A discrete universe. World Scientific (2001)Google Scholar
  10. 10.
    Langton, C.G.: Life at the edge of chaos. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 41–49. Addison-Wesley (1992)Google Scholar
  11. 11.
    Patel, M., Nagl, S.: The role of model integration in complex systems. An example from cancer biology. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Ribba, B., Alarcón, T., Marron, K., Maini, P.K., Agur, Z.: The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 444–453. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Solé, R., Goodwin, B.: Signs of life. How complexity pervades biology. Basic Books (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ángel Monteagudo
    • 1
  • José Santos
    • 1
  1. 1.Computer Science DepartmentUniversity of A CoruñaCorunnaSpain

Personalised recommendations