Advertisement

Procedure for Detection of Membranes in Three-Dimensional Subcellular Density Maps

  • A. Martinez-Sanchez
  • I. Garcia
  • J. J. Fernandez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 154)

Abstract

Electron tomography is the leading technique for visualizing the cell environment in molecular detail. Interpretation of the three-dimensional (3D) density maps is however hindered by different factors, such as noise and the crowding at the subcellular level. Although several approaches have been proposed to facilitate segmentation of the 3D structures, none has prevailed as a generic method and thus manual annotation is still a common choice in the field. In this work we introduce a novel procedure to detect membranes. These structures define the natural limits of compartments within biological specimens. Therefore, its detection turns out to be a step towards automated segmentation. Our method is based on local differential structure and on a Gaussian-like membrane model. We have tested our procedure on tomograms obtained under different experimental conditions.

Keywords

Vaccinia Virus Hessian Matrix Electron Tomography Membrane Model Automate Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cyrklaff, M., Risco, C., Fernandez, J.J., Jimenez, M.V., Esteban, M., Baumeister, W., Carrascosa, J.L.: Cryo-electron tomography of vaccinia virus. Proc. Natl. Acad. Sci. USA 102, 2772–2777 (2005)CrossRefGoogle Scholar
  2. 2.
    Fernandez, J.J., Li, S.: An improved algorithm for anisotropic diffusion for denoising tomograms. J. Struct. Biol. 144, 152–161 (2003)CrossRefGoogle Scholar
  3. 3.
    Fernandez, J.J., Li, S.: Anisotropic nonlinear filtering of cellular structures in cryoelectron tomography. Comput. Sci. Eng. 7(5), 54–61 (2005)CrossRefGoogle Scholar
  4. 4.
    Florack, L.J., Romeny, B.H., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image and Vision Computing 10, 376–388 (1992)CrossRefGoogle Scholar
  5. 5.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Frank, J. (ed.): Electron tomography. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lebbink, M.N., Geerts, W.J., Krift, T.P., Bouwhuis, M., Hertzberger, L.O., Verkleij, A.J., Koster, A.J.: Template matching as a tool for annotation of tomograms of stained biological structures. J. Struct. Biol. 158, 327–335 (2007)CrossRefGoogle Scholar
  9. 9.
    Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. PAMI 12(3), 234–254 (1990)CrossRefGoogle Scholar
  10. 10.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Computer Vision 30, 117–154 (1998)CrossRefGoogle Scholar
  11. 11.
    Lucic, V., Forster, F., Baumeister, W.: Structural studies by electron tomography: from cells to molecules. Ann. Rev. Biochem. 74, 833–865 (2005)CrossRefGoogle Scholar
  12. 12.
    Martinez-Sanchez, A., Garcia, I., Fernandez, J.J.: A differential structure approach to membrane segmentation in electron tomography. J. Struct. Biol. 175, 372–383 (2011)CrossRefGoogle Scholar
  13. 13.
    Moussavi, F., Heitz, G., Amat, F., Comolli, L.R., Koller, D., Horowitz, M.A.: 3D segmentation of cell boundaries from whole cell cryogenic electron tomography volumes. J. Struct. Biol. 170, 134–145 (2010)CrossRefGoogle Scholar
  14. 14.
    Nguyen, H., Ji, Q.: Shape-driven three-dimensional watersnake segmentation of biological membranes in electron tomography. IEEE Trans. Med. Imaging 27, 616–628 (2008)CrossRefGoogle Scholar
  15. 15.
    Sandberg, K.: Methods for image segmentation in cellular tomography. Methods in Cell Biology 79, 769–798 (2007)CrossRefGoogle Scholar
  16. 16.
    Sandberg, K., Brega, M.: Segmentation of thin structures in electron micrographs using orientation fields. J. Struct. Biol. 157, 403–415 (2007)CrossRefGoogle Scholar
  17. 17.
    Volkmann, N.: Methods for segmentation and interpretation of electron tomographic reconstructions. Methods Enzymol. 483, 31–46 (2010)CrossRefGoogle Scholar
  18. 18.
    Witkin, A.P.: Scale-space filtering. In: Proc. 8th Intl. Conf. Artif. Intell., pp. 1019–1022 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Martinez-Sanchez
    • 1
  • I. Garcia
    • 1
  • J. J. Fernandez
    • 2
  1. 1.Grupo Supercomputacion y AlgoritmosUniversidad de AlmeriaAlmeriaSpain
  2. 2.Centro Nacional de Biotecnologia (CSIC)MadridSpain

Personalised recommendations