Reconstructing Complex Metamodel Evolution

  • Sander D. Vermolen
  • Guido Wachsmuth
  • Eelco Visser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6940)

Abstract

Metamodel evolution requires model migration. To correctly migrate models, evolution needs to be made explicit. Manually describing evolution is error-prone and redundant. Metamodel matching offers a solution by automatically detecting evolution, but is only capable of detecting primitive evolution steps. In practice, primitive evolution steps are jointly applied to form a complex evolution step, which has the same effect on a metamodel as the sum of its parts, yet generally has a different effect in migration. Detection of complex evolution is therefore needed. In this paper, we present an approach to reconstruct complex evolution between two metamodel versions, using a matching result as input. It supports operator dependencies and mixed, overlapping, and incorrectly ordered complex operator components. It also supports interference between operators, where the effect of one operator is partially or completely hidden from the target metamodel by other operators.

Keywords

Complex Operator Eclipse Modeling Framework Evolution Trace Couple Evolution Meta Object Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brun, C., Pierantonio, A.: Model differences in the eclipse modelling framework. UPGRADE, The European Journal for the Informatics Professional (2008)Google Scholar
  2. 2.
    Casais, E.: Managing class evolution in object-oriented systems, ch. 8, pp. 201–244. Prentice Hall International (UK) Ltd. (1995)Google Scholar
  3. 3.
    Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-driven engineering. In: Enterprise Distributed Object Computing Conference, EDOC. IEEE (2008)Google Scholar
  4. 4.
    Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent Changes in Coupled Evolution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching transformations and weaving models. In: Proceedings of the 2007 ACM Symposium on Applied Computing, SAC 2007, pp. 963–970. ACM (2007)Google Scholar
  6. 6.
    Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics. In: Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2000, pp. 166–177. ACM (2000)Google Scholar
  7. 7.
    Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel Matching for Automatic Model Transformation Generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Favre, J.-M.: Languages evolve too! changing the software time scale. In: IWPSE 2005: Eighth International Workshop on Principles of Software Evolution, pp. 33–42. IEEE (2005)Google Scholar
  9. 9.
    Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing Model Adaptation by Precise Detection of Metamodel Changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Godfrey, M.W., Zou, L.: Using origin analysis to detect merging and splitting of source code entities. IEEE Transactions on Software Engineering, 166–181 (2005)Google Scholar
  11. 11.
    Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evolution of Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 52–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language Evolution in Practice: The History of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 3–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An Extensive Catalog of Operators for the Coupled Evolution of Metamodels and Models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Kniesel, G., Koch, H.: Static composition of refactorings. SCP 52(1-3), 9–51 (2004)MathSciNetMATHGoogle Scholar
  15. 15.
    Kolovos, D., Di Ruscio, D., Pierantonio, A., Paige, R.: Different models for model matching: An analysis of approaches to support model differencing. In: ICSE Workshop on Comparison and Versioning of Software Models, CVSM 2009, pp. 1–6 (May 2009)Google Scholar
  16. 16.
    Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models. European Journal of Information Systems 16(4), 349–361 (2007)CrossRefGoogle Scholar
  17. 17.
    Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context of model driven engineering: From theory to practice. In: Advances in Systems, Computing Sciences and Software Engineering, pp. 219–227. Springer (2006)Google Scholar
  18. 18.
    Object Management Group. Meta Object Facility (MOF) core specification version 2.0 (2006), http://www.omg.org/spec/MOF/2.0/
  19. 19.
    Ohst, D., Welle, M., Kelter, U.: Differences between versions of uml diagrams. In: Proc. of the 9th European Software Engineering Conference, ESEC/FSE, pp. 227–236. ACM (2003)Google Scholar
  20. 20.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Sprinkle, J.M.: Metamodel driven model migration. PhD thesis, Vanderbilt University (2003)Google Scholar
  23. 23.
    Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework 2.0. Addison-Wesley (2009)Google Scholar
  24. 24.
    Sun, X.L., Rose, E.: Automated schema matching techniques: An exploratory study. Research Letters in the Information and Mathematical Science 4, 113–136 (2003)Google Scholar
  25. 25.
    Tu, Q., Godfrey, M.: An integrated approach for studying architectural evolution. In: 10th International Workshop on Program Comprehension, pp. 127–136 (2002)Google Scholar
  26. 26.
    Vermolen, S.D., Visser, E.: Heterogeneous Coupled Evolution of Software Languages. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 630–644. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Visser, E.: Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Systems in StrategoXT-0.9. In: Lengauer, C., Batory, D., Blum, A., Vetta, A. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 216–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Bateni, M. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented design differencing. In: Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, ASE 2005, pp. 54–65. ACM (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sander D. Vermolen
    • 1
  • Guido Wachsmuth
    • 1
  • Eelco Visser
    • 1
  1. 1.Software Engineering Research GroupDelft University of TechnologyThe Netherlands

Personalised recommendations