Data Mining in Clinical Decision Support Systems

  • Liljana Aleksovska-Stojkovska
  • Suzana Loskovska
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 156)

Abstract

Data mining is an emerging methodology in the knowledge discovery area, which has a vast potential to be used in the health care. This paper presents the possibility for using data mining methods in extracting patient specific rules from the individual data collected for asthma patients, which are used to support the clinical decision process.

Keywords

Data Mining Association Rule Clinical Decision Support Frequent Itemsets None None 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swaroop, P., Golden, B.: Data Mining: Introduction and a Health Care Application (unpublished)Google Scholar
  2. 2.
    Jeffrey, A.K., Kern, J.A., Kernstine, K.H., Tseng, B.T.L.: Autonomous Decision Making - A Data Mining Approach. IEEE Transactions On Information Technology in Biomedicine 4(4), 274–284 (2000)CrossRefGoogle Scholar
  3. 3.
    Bellazzi, R., Zupanb, B.: Predictive data mining in clinical medicine: Current issues and guidelines. International Journal of Medical Informatics 77, 81–97 (2008), www.intl.elsevierhealth.com/journals/ijmi CrossRefGoogle Scholar
  4. 4.
    Koh, H.C., Tan, G.: Data mining applications in healthcare. J. Healthc. Inf. Manag. 19(2), 64–72 (2005)Google Scholar
  5. 5.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: SIGMOD 1993, pp. 207–216 (1993)Google Scholar
  6. 6.
  7. 7.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference VLDB, Santiago, Chile, pp. 487–499 (September 1994)Google Scholar
  8. 8.
    Moreno, M., Segrera, S., López, V.: Association Rules: Problems, solutions and new applications. Actas del III Taller Nacional de Minería de Datos y Aprendizaje, Tamida, 317–323 (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Liljana Aleksovska-Stojkovska
    • 1
    • 2
  • Suzana Loskovska
    • 3
  1. 1.MAK-System Corp.Des PlainesUSA
  2. 2.“Ss. Cyril and Methodius –Skopje”SkopjeMacedonia
  3. 3.Faculty of Electrical Engineering and ITUniversity “Ss. Cyril and Methodius – Skopje”SkopjeRepublic of Macedonia

Personalised recommendations