Lost in Translation: Data Integration Tools Meet the Semantic Web (Experiences from the Ondex Project)

  • Andrea Splendiani
  • Chris J. Rawlings
  • Shao-Chih Kuo
  • Robert Stevens
  • Phillip Lord
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 157)


More information is now being published in machine processable form on the web and, as de-facto distributed knowledge bases are materializing, partly encouraged by the vision of the Semantic Web, the focus is shifting from the publication of this information to its consumption. Platforms for data integration, visualization and analysis that are based on a graph representation of information appear first candidates to be consumers of web-based information that is readily expressible as graphs. The question is whether the adoption of these platforms to information available on the Semantic Web requires some adaptation of their data structures and semantics. Ondex is a network-based data integration, analysis and visualization platform which has been developed in a Life Sciences context. A number of features, including semantic annotation via ontologies and an attention to provenance and evidence, make this an ideal candidate to consume Semantic Web information, as well as a prototype for the application of network analysis tools in this context. By analyzing the Ondex data structure and its usage, we have found a set of discrepancies and errors arising from the semantic mismatch between a procedural approach to network analysis and the implications of a web-based representation of information.We report in the paper on the simple methodology that we have adopted to conduct such analysis, and on issues that we have found which may be relevant for a range of similar platforms.


Data Integration Provenance Information Graph Base Model Intended Semantic Graph Data Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., et al.: The Semantic Web. Scientific American (May 2001)Google Scholar
  2. 2.
    Bizer, C., et al.: Linked Data - The Story So Far, to be published in the International Journal on Semantic Web and Information Systems, Special Issue on Linked DataGoogle Scholar
  3. 3.
    Manola, F., Miller, E.: RDF Primer, World Wide Web Consortium (W3C) recommendation (February 2004),
  4. 4.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, World Wide Web Consortium (W3C) recommendation (January 2008),
  5. 5.
    HM Government,,
  6. 6.
    United States Government,,
  7. 7.
    Open Graph protocol, Facebook,
  8. 8.
    Adida, B.: Google Announces Support For RDFa, RDFa Blog,
  9. 9.
    Mika, P.: RDF and the Monkey, Yahoo Developer Network Blog,
  10. 10.
    Edlich, S.: No-SQL movement Blog,
  11. 11.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive Relationship Discovery via the Semantic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Pavlopoulos, G.A., et al.: A survey for visualization tools for biological networks analysis. BioData Mining 1, 12 (2008), doi:10.1186/1756-0381-1-12CrossRefGoogle Scholar
  13. 13.
    Koheler, K., et al.: Graph-based analysis and visualization of experimental results with. Bioinformatics 22, 1383–1390 (2006), doi:10.1093/bioinformaticsCrossRefGoogle Scholar
  14. 14.
    Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504 (2003), doi:10.1101/gr.1239303CrossRefGoogle Scholar
  15. 15.
    Neumann, E.: A Life Science Semantic Web: Are We There Yet? Sci. STKE 2005, pe22 (2005), doi:10.1126/stke.2832005pe22CrossRefGoogle Scholar
  16. 16.
    Splendiani, A.: RDFScape: Semantic Web meets Systems Biology. BMC Bioinformatics 9(suppl. 4), S6 (2008), doi:10.1186/1471-2105-9-S4-S6CrossRefGoogle Scholar
  17. 17.
    Goble, C., Stevens, R.: The State of the Nation in Data Integration. Journal of biomedical Informatics 41, 687–693 (2008), doi:10.1016/j.jbi.2008.01.008CrossRefGoogle Scholar
  18. 18.
    Karp, P.: A Strategy for Database Interoperation. Journal of Computational Biology 2, 573–586 (1995)CrossRefGoogle Scholar
  19. 19.
    Davidson, S.B., et al.: Challenges in Integrating Biological Data Sources. Journal of Computational Biology 2, 557–572 (1995)CrossRefGoogle Scholar
  20. 20.
    Splendiani, A., et al.: Ondex Semantics Specifications,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Splendiani
    • 1
  • Chris J. Rawlings
    • 1
  • Shao-Chih Kuo
    • 1
  • Robert Stevens
    • 2
  • Phillip Lord
    • 3
  1. 1.Biomathematics and Bioinformatics Dept.Rothamsted ResearchHarpendenUnited Kingdom
  2. 2.School of Computing ScienceUniversity of ManchesterManchesterUnited Kingdom
  3. 3.School of Compting ScienceNewcastle UniversityNewcastle upon TyneUnited Kingdom

Personalised recommendations