Skip to main content

Algebraic Analysis of the Computation in the Belousov-Zhabotinksy Reaction

  • Conference paper
  • 901 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7223)

Abstract

We analyse two very simple Petri nets inspired by the Oregonator model of the Belousov-Zhabotinsky reaction using our stochastic Petri net simulator. We then perform the Krohn-Rhodes holonomy decomposition of the automata derived from the Petri nets. The simplest case shows that the automaton can be expressed as a cascade of permutation-reset cyclic groups, with only 2 out of the 12 levels having only trivial permutations. The second case leads to a 35-level decomposition with 5 different simple non-abelian groups (SNAGs), the largest of which is A 9. Although the precise computational significance of these algebraic structures is not clear, the results suggest a correspondence between simple oscillations and cyclic groups, and the presence of SNAGs indicates that even extremely simple chemical systems may contain functionally complete algebras.

Keywords

  • Algebraic Analysis
  • Hypobromous Acid
  • Oregonator Model
  • Positional Number System
  • Trivial Permutation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28792-3_27
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-28792-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M.A. (ed.): Algebraic Theory of Machines, Languages, and Semigroups. Academic Press (1968)

    Google Scholar 

  2. Dini, P., Schreckling, D.: A Research Framework for Interaction Computing. In: Colugnati, F.A.B., Lopes, L.C.R., Barretto, S.F.A. (eds.) OPAALS 2010. LNICST, vol. 67, pp. 224–244. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Dömösi, P., Nehaniv, C.L.: Algebraic Theory of Automata Networks. SIAM, Philadelphia (2005)

    CrossRef  MATH  Google Scholar 

  4. Egri-Nagy, A., Mitchell, J.D., Nehaniv, C.L.: Algorithms for the Efficient Calculation of the Holonomy Decomposition. In: Dömösi, P., Iván, S. (eds.) Automata and Formal Languages: Proc. 13th Intern. Conference AFL 2011, August 17-22. Institute of Mathematics and Informatics, College of Nyíregyháza, Debrecen, Hungary (2011)

    Google Scholar 

  5. Egri-Nagy, A., Nehaniv, C.L.: PN2A: Petri Net Analysis GAP Package, http://sourceforge.net/projects/pn2a/

  6. Egri-Nagy, A., Nehaniv, C.L.: Algebraic properties of automata associated to Petri nets and applications to computation in biological systems. BioSystems 94(1-2), 135–144 (2008)

    CrossRef  Google Scholar 

  7. Egri-Nagy, A., Nehaniv, C.L.: Hierarchical coordinate systems for understanding complexity and its evolution with applications to genetic regulatory networks. Artificial Life 14(3), 299–312 (2008) (Special Issue on the Evolution of Complexity)

    CrossRef  Google Scholar 

  8. Egri-Nagy, A., Nehaniv, C.L.: SgpDec – software package for hierarchical coordinatization of groups and semigroups, implemented in the GAP computer algebra system, Version 0.5.19 (2010), http://sgpdec.sf.net

  9. Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic analysis of computation in biochemical reactions. BioSystems 94(1-2), 126–134 (2008)

    CrossRef  Google Scholar 

  10. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New York (1976)

    MATH  Google Scholar 

  11. Field, R.J., Noyes, R.M.: Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. Journal of Chemical Physics 60(5), 1877–1884 (1974)

    CrossRef  Google Scholar 

  12. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    MathSciNet  CrossRef  Google Scholar 

  13. Holcombe, W.: Algebraic Automata Theory. Cambridge University Press (1982)

    Google Scholar 

  14. Horváth, G.: Functions and Polynomials over Finite Groups from the Computational Perspective. The University of Hertfordshire, PhD Dissertation (2008)

    Google Scholar 

  15. Kauffman, S.: The Origins of Order: Self-Organisation and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  16. Krohn, K., Rhodes, J.: Algebraic Theory of Machines. I. Prime Decomposition Theorem for Finite Semigroups and Machines. Transactions of the American Mathematical Society 116, 450–464 (1965)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Krohn, K., Maurer, W.D., Rhodes, J.: Realizing complex boolean functions with simple groups. Information and Control 9(2), 190–195 (1966)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Maler, O.: On the Krohn-Rhodes Cascaded Decomposition Theorem, http://www-verimag.imag.fr/~maler/

  19. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  20. Noyes, R.M., Field, R.J., Körös, E.: Oscillations in Chemical Systems I. Detailed Mechanism in a System Showing Temporal Oscillations. Journal of the American Chemical Society 94(4), 1394–1395 (1972)

    CrossRef  Google Scholar 

  21. Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM 2 (1962)

    Google Scholar 

  22. Rhodes, J.: Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games. World Scientific Press (2010)

    Google Scholar 

  23. Schilstra, M.J., Martin, S.R.: Simple stochastic simulation. In: Michael, L., Ludwig, B. (eds.) Methods in Enzymology, pp. 381–409. Academic Press, Elsevier (2009)

    Google Scholar 

  24. Scott, S.: Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University Press, Oxford (1994)

    Google Scholar 

  25. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4 (2006), http://www.gap-system.org

  26. Zeiger, H.P.: Cascade synthesis of finite-state machines. Information and Control 10(4), 419–433 (1967)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dini, P., Nehaniv, C.L., Egri-Nagy, A., Schilstra, M.J. (2012). Algebraic Analysis of the Computation in the Belousov-Zhabotinksy Reaction. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)