Simulating Neurons in Reaction-Diffusion Chemistry

  • James Stovold
  • Simon O’Keefe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7223)


Diffusive Computation is a method of using diffusing particles as a representation of data. The work presented attempts to show that through simulating spiking neurons, diffusive computation has at least the same computational power as spiking neural networks. We demonstrate (by simulation) that wavefronts in a Reaction-Diffusion system have a cumulative effect on concentration of reaction components when they arrive at the same point in the reactor, and that a catalyst-free region acts as a threshold on the initiation of an outgoing wave. Spiking neuron models can be mapped onto this system, and therefore RD systems can be used for computation using the same models as are applied to spiking neurons.


Spike Train Synaptic Cleft Multiple Wave Chemical Synapse Delay Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamatzky, A., Bull, L., De Lacy Costello, B., Holley, J., Jahan, I.: Computational Modalities of Belousov-Zhabotinsky Encapsulated Vesicles. ArXiv e-prints (September 2010)Google Scholar
  2. 2.
    Adamatzky, A.: Collision-based computing in Belousov-Zhabotinsky medium. Chaos, Solitons & Fractals 21(5), 1259–1264 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Adamatzky, A., De Lacy Costello, B.: Binary collisions between wave-fragments in a sub-excitable Belousov-Zhabotinsky medium. Chaos, Solitons & Fractals 34(2), 307–315 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Austin, J., Stonham, T.: Distributed associative memory for use in scene analysis. Image and Vision Computing 5(4), 251–260 (1987)CrossRefGoogle Scholar
  5. 5.
    Belousov, B.P.: A periodic reaction and its mechanism. Med. Publ., Moscow (1959)Google Scholar
  6. 6.
    Conrad, M., Zauner, K.: Molecular Computing Conformation-Based Computing: A Rationale and a Recipe, pp. 1–31. MIT Press (2003)Google Scholar
  7. 7.
    Gorecki, J., Gorecka, J., Igarashi, Y.: Information processing with structured excitable medium. Natural Computing 8, 473–492 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. The Journal of Physical Chemistry A 107(10), 1664–1669 (2003)CrossRefGoogle Scholar
  9. 9.
    Janz, R.D., Vanecek, D.J., Field, R.J.: Composite double oscillation in a modified version of the oregonator model of the Belousov-Zhabotinsky reaction. The Journal of Chemical Physics 73(7), 3132–3138 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337(6204), 244–247 (1989)CrossRefGoogle Scholar
  11. 11.
    Motoike, I., Yoshikawa, K.: Information operations with an excitable field. Phys. Rev. E 59, 5354–5360 (1999)CrossRefGoogle Scholar
  12. 12.
    Rovinsky, A.B.: Spiral waves in a model of the ferroin catalyzed Belousov-Zhabotinsky reaction. The Journal of Physical Chemistry 90(2), 217–219 (1986)CrossRefGoogle Scholar
  13. 13.
    Rovinsky, A.B., Zhabotinsky, A.M.: Mechanism and mathematical model of the oscillating bromate-ferroin-bromomalonic acid reaction. The Journal of Physical Chemistry 88(25), 6081–6084 (1984)CrossRefGoogle Scholar
  14. 14.
    Tóth, Á., Showalter, K.: Logic gates in excitable media. J. Chem Phys. 103(6), 2058–2066 (1995)CrossRefGoogle Scholar
  15. 15.
    Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)CrossRefGoogle Scholar
  16. 16.
    Maass, W.: Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9), 1659–1671 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • James Stovold
    • 1
  • Simon O’Keefe
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations