Advertisement

Criticality of Spatiotemporal Dynamics in Contact Mediated Pattern Formation

  • Nicholas S. Flann
  • Hamid Mohamadlou
  • Gregory J. Podgorski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7223)

Abstract

The tissues of multicellular organisms are made of differentiated cells arranged in organized patterns. This organization emerges during development from the coupling of dynamic intra- and intercellular regulatory networks. This work applies the methods of information theory to understand how regulatory network structure within and between cells relates to the complexity of spatial patterns that emerge as a consequence of network operation. A computational study was performed in which undifferentiated cells were arranged in a two dimensional lattice, with gene expression in each cell regulated by an identical intracellular randomly generated Boolean network. Cell-cell contact signalling between embryonic cells is modeled as coupling among intracellular networks so that gene expression in one cell can influence the expression of genes in adjacent cells. In this system, the initially identical cells differentiate and form patterns of different cell types. The complexity of network structure, temporal dynamics and spatial organization is quantified through the Kolmogorov-based measures of normalized compression distance and set complexity. Results over sets of random networks from ordered, critical and chaotic domains demonstrate that: (1) Ordered and critical intracellular networks tend to create the most complex intercellular communication networks and the most information-dense patterns; (2) signalling configurations where cell-to-cell communication is non-directional mostly produce simple patterns irrespective of the internal network domain; and (3) directional signalling configurations, similar to those that function in planar cell polarity, produce the most complex patterns when the intracellular networks are non-chaotic.

Keywords

Boolean Function Complexity Domain Boolean Network Spatiotemporal Dynamics Signalling Bandwidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster (2003), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3370
  2. 2.
    Án, M.C., Alfonseca, M., Ortega, A.: Common pitfalls using normalized compression distance: what to watch out for in a compressor. Communications in Information and Systems 5, 367–384 (2005), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.9265 MathSciNetGoogle Scholar
  3. 3.
    Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms. PLoS ONE 3(6), e2456+ (2008), http://dx.doi.org/10.1371/journal.pone.0002456, doi:10.1371/journal.pone.0002456CrossRefGoogle Scholar
  4. 4.
    Bodnar, J.W.: Programming the Drosophila embryo. Journal of Theoretical Biology 188(4), 391–445 (1997), http://dx.doi.org/10.1006/jtbi.1996.0328 CrossRefGoogle Scholar
  5. 5.
    Burrows, M., Wheeler, D.J., Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm (1994), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177
  6. 6.
    Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared Information and Program Plagiarism Detection. IEEE Transactions on Information Theory 50(7), 1545–1551 (2004), http://dx.doi.org/10.1109/TIT.2004.830793 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005), http://dx.doi.org/10.1109/TIT.2005.844059 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Derrida, B., Pomeau, Y.: Random Networks of Automata: A Simple Annealed Approximation. EPL (Europhysics Letters) 1(2), 45–49 (1986), http://dx.doi.org/10.1209/0295-5075/1/2/001 CrossRefGoogle Scholar
  9. 9.
    Eglen, S.J., Willshaw, D.J.: Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development 129(23), 5399–5408 (2002), http://view.ncbi.nlm.nih.gov/pubmed/12403711 CrossRefGoogle Scholar
  10. 10.
    Galas, D.J., Nykter, M., Carter, G.W., Price, N.D., Shmulevich, I.: Biological Information as Set-Based Complexity. IEEE Transactions on Information Theory 56(2), 667–677 (2010), http://dx.doi.org/10.1109/TIT.2009.2037046 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goodyear, R., Richardson, G.: Pattern formation in the basilar papilla: evidence for cell rearrangement. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 17(16), 6289–6301 (1997), http://view.ncbi.nlm.nih.gov/pubmed/9236239 Google Scholar
  12. 12.
    Huang, S., Eichler, G., Yam, Y.B., Ingber, D.E.: Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network. Physical Review Letters 94(12), 128701+ (2005), http://dx.doi.org/10.1103/PhysRevLett.94.128701 CrossRefGoogle Scholar
  13. 13.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969), http://view.ncbi.nlm.nih.gov/pubmed/5803332 CrossRefGoogle Scholar
  14. 14.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution, 1st edn. Oxford University Press, USA (1993), http://www.worldcat.org/isbn/0195079515 Google Scholar
  15. 15.
    Kauffman, S.A., Johnsen, S.: Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149(4), 467–505 (1991), http://dx.doi.org/10.1016/S0022-51930580094-3 CrossRefGoogle Scholar
  16. 16.
    Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E.: Broadband Criticality of Human Brain Network Synchronization. PLoS Comput. Biol. 5(3), e1000314+ (2009), http://dx.doi.org/10.1371/journal.pcbi.1000314 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: Evolution and morphogenesis of differentiated multicellular organisms: Autonomously generated diffusion gradients for positional information. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 321–328. MIT Press (2008), http://panmental.de/ALifeXIflag
  18. 18.
    Knoll, A.H.: The Multiple Origins of Complex Multicellularity. Annual Review of Earth and Planetary Sciences 39(1), 217–239 (2011), http://dx.doi.org/10.1146/annurev.earth.031208.100209 CrossRefGoogle Scholar
  19. 19.
    Lander, A.D.: Morpheus Unbound: Reimagining the Morphogen Gradient. Cell 128(2), 245–256 (2007), http://dx.doi.org/10.1016/j.cell.2007.01.004 CrossRefGoogle Scholar
  20. 20.
    Lander, A.D.: Pattern, Growth, and Control. Cell 144(6), 955–969 (2011), http://dx.doi.org/10.1016/j.cell.2011.03.009 CrossRefGoogle Scholar
  21. 21.
    Mazumdar, A., Mazumdar, M.: How one becomes many: blastoderm cellularization in Drosophila melanogaster. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 24(11), 1012–1022 (2002), http://dx.doi.org/10.1002/bies.10184 Google Scholar
  22. 22.
    Mitchell, M., Hraber, P., Crutchfield, J.P.: Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations (March 1993), http://arxiv.org/abs/adap-org/9303003
  23. 23.
    Nykter, M., Price, N.D., Larjo, A., Aho, T., Kauffman, S.A., Harja, O.Y., Shmulevich, I.: Critical Networks Exhibit Maximal Information Diversity in Structure-Dynamics Relationships. Physical Review Letters 100(5), 058702+ (2008), http://dx.doi.org/10.1103/PhysRevLett.100.058702 CrossRefGoogle Scholar
  24. 24.
    Serra, R., Villani, M., Damiani, C., Graudenzi, A., Colacci, A.: The Diffusion of Perturbations in a Model of Coupled Random Boolean Networks. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 315–322. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-79992-4_40 CrossRefGoogle Scholar
  25. 25.
    Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences of the United States of America 102(38), 13439–13444 (2005), http://dx.doi.org/10.1073/pnas.0506771102 CrossRefGoogle Scholar
  26. 26.
    Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description. Journal of Theoretical Biology 153(1), 1–23 (1991), http://dx.doi.org/10.1016/S0022-51930580350-9 CrossRefGoogle Scholar
  27. 27.
    Villani, M., Serra, R., Ingrami, P., Kauffman, S.A.: Coupled Random Boolean Network Forming an Artificial Tissue. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 548–556. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11861201_63 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicholas S. Flann
    • 1
  • Hamid Mohamadlou
    • 1
  • Gregory J. Podgorski
    • 2
  1. 1.Department of Computer ScienceUtah State UniversityU.S.A.
  2. 2.Department of BiologyUtah State UniversityU.S.A.

Personalised recommendations