Using Artificial Epigenetic Regulatory Networks to Control Complex Tasks within Chaotic Systems

  • Alexander P. Turner
  • Michael A. Lones
  • Luis A. Fuente
  • Susan Stepney
  • Leo S. Caves
  • Andy M. Tyrrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7223)


Artificial gene regulatory networks are computational models which draw inspiration from real world networks of biological gene regulation. Since their inception they have been used to infer knowledge about gene regulation and as methods of computation. These computational models have been shown to possess properties typically found in the biological world such as robustness and self organisation. Recently, it has become apparent that epigenetic mechanisms play an important role in gene regulation. This paper introduces a new model, the Artificial Epigenetic Regulatory Network (AERN) which builds upon existing models by adding an epigenetic control layer. The results demonstrate that the AERNs are more adept at controlling multiple opposing trajectories within Chirikov’s standard map, suggesting that AERNs are an interesting area for further investigation.


Regulatory Network Chaotic Dynamic Epigenetic Mechanism Gene Regulatory Network Real World Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.: Molecular Biology of the Cell, 3rd edn. Oxford Univ. Press (1994)Google Scholar
  2. 2.
    Allis, C., Jenuwein, T., Reinberg, D.: Epigenetics. Cold Spring Harbor Laboratory Press (2007)Google Scholar
  3. 3.
    Bird, A.: DNA methylation patterns and epigenetic memory. Genes & Development 16(1), 6 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bird, A.: Perceptions of epigenetics. Nature 447(7143), 396 (2007)CrossRefGoogle Scholar
  5. 5.
    Bollt, E., Meiss, J.: Controlling chaotic transport through recurrence. Physica D: Nonlinear Phenomena 81(3), 280–294 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bushman, F.: Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor Laboratory Press (2002)Google Scholar
  7. 7.
    Cedar, H., Bergman, Y.: Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10(5), 295–304 (2009)CrossRefGoogle Scholar
  8. 8.
    Chirikov, B., Sanders, A.: Research concerning the theory of non-linear resonance and stochasticity. Nuclear Physics Institute of the Siberian Section of the USSR Academy of Sciences (1971)Google Scholar
  9. 9.
    Fraser, C., Gocayne, J., White, O., Adams, M., Clayton, R., Fleischmann, R., Bult, C., Kerlavage, A., Sutton, G., Kelley, J., et al.: The minimal gene complement of mycoplasma genitalium. Science 270(5235), 397 (1995)CrossRefGoogle Scholar
  10. 10.
    Harvey, I., Bossomaier, T.: Time out of joint: Attractors in asynchronous random boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75. MIT Press, Cambridge (1997)Google Scholar
  11. 11.
    Hattman, S.: Dna-[adenine] methylation in lower eukaryotes. Biochemistry 70(5), 550–558 (2005)CrossRefGoogle Scholar
  12. 12.
    Jackson, J., Lindroth, A., Cao, X., Jacobsen, S.: Control of CpNpG DNA methylation by the kryptonite histone h3 methyltransferase. Nature 416(6880), 556–560 (2002)CrossRefGoogle Scholar
  13. 13.
    Jeanteur, P.: Epigenetics and Chromatin. Progress in Molecular and Subcellular Biology. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. Proceedings of the National Academy of Sciences of the United States of America 100(25), 14796–14799 (2003)CrossRefGoogle Scholar
  15. 15.
    Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)CrossRefGoogle Scholar
  16. 16.
    Kumar, S.: The evolution of genetic regulatory networks for single and multicellular development. In: GECCO. Citeseer (2004)Google Scholar
  17. 17.
    Latchman, D.S.: Gene regulation: a eukaryotic perspective. Advanced text. Taylor & Francis (2005)Google Scholar
  18. 18.
    Lones, M.A., Tyrrell, A.M., Stepney, S., Caves, L.S.: Controlling Complex Dynamics with Artificial Biochemical Networks. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 159–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Mitchell, M.: An introduction to genetic algorithms. Complex adaptive systems. MIT Press (1998)Google Scholar
  20. 20.
    Mohn, F., Schübeler, D.: Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends in Genetics 25(3), 129–136 (2009)CrossRefGoogle Scholar
  21. 21.
    Quick, T., Nehaniv, C.L., Dautenhahn, K., Roberts, G.: Evolving Embodied Genetic Regulatory Network-Driven Control Systems. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 266–277. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Tél, T., Gruiz, M.: Chaotic dynamics: an introduction based on classical mechanics. Cambridge University Press (2006)Google Scholar
  23. 23.
    Turner, B.: Chromatin and gene regulation: mechanisms in epigenetics. Blackwell Science (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander P. Turner
    • 1
    • 4
  • Michael A. Lones
    • 1
    • 4
  • Luis A. Fuente
    • 1
    • 4
  • Susan Stepney
    • 2
    • 4
  • Leo S. Caves
    • 3
    • 4
  • Andy M. Tyrrell
    • 1
    • 4
  1. 1.Department of ElectronicsUniversity of YorkHeslingtonUK
  2. 2.Department of Computer ScienceUniversity of YorkHeslingtonUK
  3. 3.Department of BiologyUniversity of YorkHeslingtonUK
  4. 4.York Centre for Complex Systems Analysis (YCCSA)University of YorkHeslingtonUK

Personalised recommendations