Advertisement

Toward a Spatially-Centered Approach to Integrate Heterogeneous and Multi-scales Urban Component Models

  • Ines Hassoumi
  • Christophe Lang
  • Nicolas Marilleau
  • Moncef Temani
  • Khaled Ghedira
  • Jean Daniel Zucker
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 155)

Abstract

This article addresses a model coupling based approach (i.e reusing and combining spatial models) for modeling and simulating complex systems. Our research is conducted by a land use program of Métouia city (Tunisia) for which administration would study (by simulations) different planning scenarios to identify strategies of industrial development. These simulations should take into account demographic, socio-economic and environmental factors. Many urban models are available but they do not integrate these three aspects. This limitation could be solved by a model coupling based approach. In this paper, from an analysis of models and approaches presented in the literature, we identify key points, needs and the basis of an approach to couple models. Then, we introduce an original approach, based on agent paradigm, in which space is the coupling factor to interconnect heterogeneous models (mathematical models, stochastic models, individual based models, and so on). The pertinence of this coupling approach is also raised by the correlation to observe the impact of models on each other.

Keywords

model coupling based approach multi-agent systems complex systems modeling spatial modeling urban systems urban dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, E.J.: Stochastic differential equations and persistence time for two interacting populations. Discrete and Impulsive Systems 5, 271–281 (1999)MATHGoogle Scholar
  2. 2.
    Baati, L.: Approche de modisation devs structure hirarchique et dynamique. Shedae 15 (2007)Google Scholar
  3. 3.
    Belouze, P.: Un modéle intégré d’un systéme irrigué par la prise en compte de phénoménes hydrauliques, économiques et hydro-pédologiques: application sur le périmétre irrigué de Chishtian, Penjab sud, Pakistan. Ph.D. thesis, Université de Montpellier (1996)Google Scholar
  4. 4.
    David, D., Payet, D., Botta, A., Lajoie, G., Manglou, S., Courdier, R.: Un couplage de dynamiques comportementales: Le modéle ds pour laménagement du territoire. In: Cepadues (ed.) Proceedings of the Journées Francophones des systémes multi-agents, JFSMA 2007, Carcassonne, France, pp. 129–138 (October 2007)Google Scholar
  5. 5.
    Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Organizational View of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Fianyo, Y.E.: Couplage de modéles á l’aide d’agents: le systéme OSIRIS. Ph.D. thesis, Université PARIS IX-Dauphine UFR Sciences Des Organisations, France (2001)Google Scholar
  7. 7.
    Fujita, M., Thisse, J.F.: économie géographique, problémes anciens et nouvelles perspectives. Annals of Economics and Statistics 45, 37–87 (1997)Google Scholar
  8. 8.
    Gurin, F., Mathian, H., Pumain, D.: sanders, L., Bura, S.: Spatial analysis biodemographic data. In: Congresses colloquia (1996)Google Scholar
  9. 9.
    Laurini, R.: les systémes d’information pour la gestion des villes. données urbaines 25, 45–50 (1994)Google Scholar
  10. 10.
    Marilleau, N., Lang, C., Chatonnay, P., Philippe, L.: An agent based framework for urban mobility simulation. In: PDP, France, pp. 355–361 (2006)Google Scholar
  11. 11.
    Perret, J., Boffet-Mas, A., Ruas, A.: Understanding urban dynamics: the use of vector topographic databases and the creation of spatio-temporal databases. In: Proceedings of the 24th International Cartography Conference (ICC 2009). Cepadues Editions, Santiago (2009)Google Scholar
  12. 12.
    Quijano, J.G.: Modéles d’auto-organisation pour l’émergence de formes urbaines á partir de comportements individuels Bogota. Ph.D. thesis, Université PARIS 6(France) (2007)Google Scholar
  13. 13.
    Siebert, J.: Approche multi-agent pour la multimodélisation et le couplage de simulations. Application l’étude des influences entre le fonctionnement des réseaux ambiants et le comportement de leurs utilisateurs. Ph.D. thesis, Nancy université (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ines Hassoumi
    • 1
    • 2
  • Christophe Lang
    • 3
  • Nicolas Marilleau
    • 2
  • Moncef Temani
    • 1
  • Khaled Ghedira
    • 1
  • Jean Daniel Zucker
    • 4
  1. 1.SOIE - ISG, Université de TunisTunisTunisia
  2. 2.UMI 209 UMMISCO, IRD Université Pierre et Marie CurieParisFrance
  3. 3.LIFC - Université de Franche ComtéBesançonFrance
  4. 4.UMI 209 UMMISCO, IRD-Institut pour la Francophonie et l’InformatiqueParisFrance

Personalised recommendations