Evaluation of a Multi-Agent System for the Evolving of Domain Ontologies from Texts

  • Zied Sellami
  • Valérie Camps
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 155)


Ontologies are one of the most used representation to model the domain knowledge. An ontology consists of a set of concepts connected by semantic relations. Manual ontology building and evolving are difficult and complex tasks. This paper presents DYNAMO, a software based on a Multi-Agent System (MAS) that automates these tasks. Terms and concepts of a given domain are agentified. These agents cooperate to determine their place in the MAS (that is the ontology) thanks to (i) lexical relations between terms, (ii) some adaptive mechanisms enabling addition, removing or moving of new terms, concepts and relations in the ontology as well as (iii) feedbacks from the ontologist about the propositions given by the MAS. This paper presents the architecture of DYNAMO, its mechanisms for ontology evolution and its evaluations.


Domain Ontology Candidate Term Ontology Evolution Corpus Analyzer Ontology Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akinsola, T.M.: Automated Ontology Evolution. Masters of science informatics. University of Edinburgh, Scotland (2008)Google Scholar
  2. 2.
    Aubin, S., Hamon, T.: Improving Term Extraction with Terminological Resources. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 380–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence and Applications Series. IOS Press, Amsterdam (2005)Google Scholar
  4. 4.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Cimiano, P., Völker, J.: Text2onto - A Framework for Ontology Learning and Data-Driven Change Discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Flouris, G.: On belief change and ontology evolution. PhD thesis, University of Crete, Department of Computer Science, Heraklion, Greece (2006)Google Scholar
  7. 7.
    Flouris, G., Plexousakis, D., Antoniou, G.: A classification of ontology change. In: CEUR-WS 201. (2006)Google Scholar
  8. 8.
    Gandon, F.: Distributed Artificial Intelligence and Knowledge Management: ontologies and multi-agent systems for a corporate semantic web. Phd, Univ. de Nice, France (2002)Google Scholar
  9. 9.
    Gawrysiak, P., Protaziuk, G., Rybiński, H., Delteil, A.: Text Onto Miner – A Semi Automated Ontology Building System. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 563–573. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Harris, Z.S.: Mathematical Structures of Language. Wiley, New York (1968)Google Scholar
  11. 11.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: 14th Int. Conference on Computational Linguistics (COLING), pp. 539–545 (1992)Google Scholar
  12. 12.
    Klein, M.: Change management for distributed ontologies. PhD thesis, Dutch Graduate School for Information and Knowledge Systems, Germany (2004)Google Scholar
  13. 13.
    Leen-Kiat, S.: Multiagent distributed ontology learning. In: 1st Int. Joint Conference on Workshop on Ontologies in Agent Systems, AAMAS, Bologna, Italy, vol. 66, pp. 75–79 (2002)Google Scholar
  14. 14.
    Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetGoogle Scholar
  15. 15.
    Maedche, A.: Ontology learning for the Semantic Web, vol. 665. Kluwer Academic Publishers (2002)Google Scholar
  16. 16.
    Ottens, K., Hernandez, N., Gleizes, M.-P., Aussenac-Gilles, N.: A multi-agent system for dynamic ontologies. Journal of Logic and Computation, Special Issue on Ontology Dynamics 19, 1–28 (2008)Google Scholar
  17. 17.
    Reinberger, M.-L., Spyns, P.: Discovering knowledge in texts for the learning of dogma-inspired ontologies. In: Workshop on Ontology Learning and Population, ECAI 2004, Valencia, Spain, pp. 19–24 (2004)Google Scholar
  18. 18.
    Reymonet, A., Thomas, J., Aussenac-Gilles, N.: Modelling ontological and terminological resources in OWL DL. In: OntoLex 2007 - From Text to Knowledge: The Lexicon/Ontology Interface - Workshop at ISWC 2007, Busan, South Korea (2007)Google Scholar
  19. 19.
    Safari, L., Afsharchi, M., Far, B.H.: Concepts in action: Performance study of agents learning ontology concepts from peer agents. In: ICAART 2009, pp. 526–532 (2009)Google Scholar
  20. 20.
    Sellami, Z., Camps, V., Aussenac-Gilles, N., Rougemaille, S.: Ontology Co-construction with an Adaptive Multi-Agent System: Principles and Case-study. CCIS, vol. 128, pp. 237–248. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Sellami, Z., Camps, V., Gleizes, M.-P., Rougemaille, S.: Système Multi-Agent pour la construction et l’évolution d’ontologies. In: Journées Francophones sur les Systèmes Multi-Agents (JFSMA), Mahdia, Tunisie, pp. 151–161. Cepadues (2010)Google Scholar
  22. 22.
    Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, Karlsruhe University. Germany (2004)Google Scholar
  23. 23.
    Tamma, V., Bench-Capon, T.: An ontology model to facilitate knowledge-sharing in multi-agent systems. Knowl. Eng. Rev. 17, 41–60 (2002)CrossRefGoogle Scholar
  24. 24.
    Velardi, P., Navigli, R., Cucchiarelli, A., Neri, F.: Evaluation of ontolearn, a methodology for automatic learning of domain ontologies. In: Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)Google Scholar
  25. 25.
    Wang, J., Les Gasser, L.: Mutual online ontology alignment. In: Workshop on Ontologies in Agent Systems, Bologna, Italy, vol. 66, pp. 103–113 (2002)Google Scholar
  26. 26.
    Zablith, F., Sabou, M., d’Aquin, M., Motta, E.: Ontology Evolution with Evolva. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 908–912. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IRIT (Institut de Recherche en Informatique de Toulouse)University of ToulouseToulouse cedex 9France

Personalised recommendations