Traffic Behavioral Simulation in Urban and Suburban – Representation of the Drivers’ Environment

  • Feirouz Ksontini
  • Stéphane Espié
  • Zahia Guessoum
  • René Mandiau
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 155)


The aim of this paper is to improve the validity of traffic simulations in urban and suburban fields, with a better consideration of the driving context and driver behavior in terms of anticipation of positioning on the lanes and occupation of space. Our model is based on a multi-agent approach and the emergence concept. The simulation intends to reproduce the observed behavior such as filtering between vehicles (two-wheels, emergency vehicles), prepositioning on lanes when approaching the road intersections, “exceptional” situations (stranded vehicle or improperly parked, etc.). The proposed approach considers that each driver is perceiving the situation in an ego-centered way and is readapting the road space by overriding the existing physical structure.


Driver Behavior Traffic Simulation Emergency Vehicle High Traffic Density ECER Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazzan, A.L.C.: A distributed approach for coordination of traffic signal agents. Autonomous Agent and Multi-Agent Systems 10(2), 131–164 (2005)CrossRefGoogle Scholar
  2. 2.
    Bazzan, A.L.C., Wahle, J., Klügl, F.: Agents in Traffic Modelling - From Reactive to Social Behaviour. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 303–306. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bonte, L., Espié, S., Mathieu, P.: Modélisation et simulation des usagers deux roues motorisés dans ARCHISIM. In: Proceedings of JFSMA (2006)Google Scholar
  4. 4.
    Burmeister, B., Doormann, J., Matylis, G.: Agent-oriented traffic simulation. Trans. Soc. Comput. Simul. 14, 79–86 (1997)Google Scholar
  5. 5.
    Dai, J.C., Li, X.: Multi-agent systems for simulating traffic behaviors. Chinese Science Bulletin 55(3), 293–300 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Doniec, A., Mandiau, R., Piechowiak, S., Espié, S.: Anticipation based on constraint processing in a multi-agent context. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 17(2), 339–361 (2008)CrossRefGoogle Scholar
  7. 7.
    El Hadouaj, S.: Conception de comportements de résolution de conflits et de coordination: Application à une simulation multi-agent du trafic routier. PhD, Université Paris 6 (2004)Google Scholar
  8. 8.
    Espié, S.: Archisim, multi-actor parallel architecture for traffic simulation. In: Proceeding of the Second World Congress on Intelligent Transport Systems, Yokohama, vol. IV (1995)Google Scholar
  9. 9.
    Fitzpatrick, K., Carlson, P., Brewer, M., Wooldridge, M.: Design Factors That Effect Driver Speed on Suburban Streets. Transportation Research Record, No. 1751 (2001)Google Scholar
  10. 10.
    Guessoum, Z., Mandiau, R.: Modèles multi-agents pour des environnements complexes. Numéro spécial de la Revue Française d’Intelligence Artificielle, RIA (2008)Google Scholar
  11. 11.
    Hidas, P.: Modelling Lane Changing and Merging in Microscopic Traffic Simulation. Transp. Research, Part-C: Emerging Technologies 10, 351–371 (2002)CrossRefGoogle Scholar
  12. 12.
    Lee, T.C., Polak, J.W., Bell, M.G.H.: New Approach to Modeling Mixed Traffic Containing Motorcycles in Urban Areas. Transportation Research Record, 195–205 (2009)Google Scholar
  13. 13.
    Lewis-Evans, B., Charlton, S.G.: Explicit and implicit processes in behavioral adaptation to road width. Accident Analysis and Prevention 38, 610–617 (2006)CrossRefGoogle Scholar
  14. 14.
    Saad, F.: In-depth analysis of interactions between drivers and the road environment: contribution of on-board observations and subsequent verbal report. In: Proceedings of the 4th Workshop of ICTCT, University of Lund (1992)Google Scholar
  15. 15.
    Schramm, A.J., Rakotonirainy, A.: The effect of traffic lane widths on the safety of cyclists in urban areas. Journal of the Australasian College of Road Safety 21(2), 43–49 (2010)Google Scholar
  16. 16.
    Tornros, J.: Driving Behavior in a Real and a Simulated Tunnel – A Validation Study. Accident Analysis and Prevention 30, 497–503 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Feirouz Ksontini
    • 1
  • Stéphane Espié
    • 1
  • Zahia Guessoum
    • 2
  • René Mandiau
    • 3
  1. 1.Université Paris-Est/ IFSTTAR/IM-LEPSISParis 15France
  2. 2.Université de Valenciennes et Hainaut Cambrésis - LAMIHValenciennesFrance
  3. 3.Université de Paris 6 – LIP6ParisFrance

Personalised recommendations