Explicit NMPC Based on Neural Network Models

  • Alexandra Grancharova
  • Tor Arne Johansen
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 429)


This chapter considers an approximate mp-NLP approach to explicit solution of deterministic NMPC problems for constrained nonlinear systems described by neural network NARX models. The approach builds an orthogonal search tree structure of the regressor space partition and consists in constructing a piecewise linear (PWL) approximation to the optimal control sequence. A dual-mode control strategy is proposed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. It consists in using the explicit NMPC (based on NARX model) when the output variable is far from the origin and applying an LQR in a neighborhood of the origin. The LQR design is based on an augmented linear ARX model which takes into account the integral regulation error. The approximate mp-NLP approach and the dual-mode approach are applied to design an explicit output-feedback NMPC for regulation of a pH maintaining system.


Neural Network Model Linear Quadratic Regulator Gaussian Process Model Recede Horizon Control Nonlinear Model Predictive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34, 1205–1217 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chen, S., Billings, S.A., Grant, P.M.: Non-linear system identification using neural networks. International Journal of Control 51, 1191–1214 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press, Orlando (1983)zbMATHGoogle Scholar
  4. 4.
    Grancharova, A., Johansen, T.A.: Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control. Automatica 45, 1134–1143 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Grancharova, A., Kocijan, J., Johansen, T.A.: Dual-mode explicit output-feedback predictive control based on neural network models. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2010), Bologna, Italy, pp. 545–550 (2010),
  6. 6.
    Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit output-feedback nonlinear predictive control based on black-box models. Engineering Applications of Artificial Intelligence 24, 388–397 (2011)CrossRefGoogle Scholar
  7. 7.
    Han, J., Moraga, C., Sinne, S.: Optimization of feedforward neural networks. Engineering Applications of Artificial Intelligence 9, 109–119 (1996)CrossRefGoogle Scholar
  8. 8.
    He, X., Asada, H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: Proceedings of the American Control Conference, San Francisco, CA, pp. 2520–2523 (1993)Google Scholar
  9. 9.
    Henson, M.A., Seborg, D.E.: Adaptive nonlinear control of a pH neutralization process. IEEE Transactions on Control System Technology 2, 169–183 (1994)CrossRefGoogle Scholar
  10. 10.
    Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40, 293–300 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kocijan, J., Murray-Smith, R.: Nonlinear Predictive Control with a Gaussian Process Model. In: Murray-Smith, R., Shorten, R. (eds.) Switching and Learning in Feedback Systems. LNCS, vol. 3355, pp. 185–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Lepetič, M., Škrjanc, I., Chiacchiarini, H.G., Matko, D.: Predictive functional control based on fuzzy model: Magnetic suspension system case study. Engineering Applications of Artificial Intelligence 16, 425–430 (2003)CrossRefGoogle Scholar
  13. 13.
    Ljung, L., Glad, T.: Modeling of Dynamic Systems. Prentice Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  14. 14.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control 38, 1623–1633 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)CrossRefGoogle Scholar
  17. 17.
    Ogata, K.: Discrete-time Control Systems. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  18. 18.
    Peng, H., Yang, Z.J., Gui, W., Wu, M., Shioya, H., Nakano, K.: Nonlinear system modelling and robust predictive control based on RBF-ARX model. Engineering Applications of Artificial Intelligence 20, 1–9 (2007)CrossRefGoogle Scholar
  19. 19.
    Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive systems. John Wiley & Sons, New York (2000)Google Scholar
  20. 20.
    Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Non-linear black-box modeling in system identification: A unified overview. Automatica 31, 1691–1724 (1995)zbMATHCrossRefGoogle Scholar
  21. 21.
    Venkatasubramanian, V., McAvoy, T.J. (eds.): Neural network applications in chemical engineering. Special Issue of Computers & Chemical Engineering 16(4) (1992)Google Scholar
  22. 22.
    Zeng, G.M., Qin, X.S., He, L., Huang, G.H., Liu, H.L., Lin, Y.P.: A neural network predictive control system for paper mill wastewater treatment. Engineering Applications of Artificial Intelligence 16, 121–129 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of System Engineering and RoboticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Engineering CyberneticsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations