Effect of Uncertainties in Default Detection through the Wave Finite Elements

  • Mohamed Amine Ben Souf
  • Mohamed Ichchou
  • Olivier Bareille
  • Mohamed Haddar
Conference paper


Wave propagation in coupled structure is investigated in this paper.When waves propagate through a media, they will encounter changes in geometry or material. At such discontinuities due to corrosion or cracks, some of waves will be reflected and transmitted. A hybrid numerical method called ’Wave Finite Element/ Stochastic Finite Element Method’ (WFE/SFEM) is been used to take into account the variation in propagation characteristics due to the variability in mechanical and geometrical properties of coupling element. The effect of uncertain discontinuities on the reflection and transmission coefficients is evaluated and validated for 3D multimodal waveguide vs Monte Carlo simulations.


Timoshenko Beam Couple Structure Diffusion Matrix Coupling Element Polynomial Chaos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mace, B.R.: Wave reflection and transmission in beams. Journal of Sound and Vibration 97(2), 237–246 (1984)CrossRefGoogle Scholar
  2. 2.
    Mei, C., Karpenko, Y., Moody, S., Allen, D.: Analytical approach to free and forced vibrations of axially loaded cracked timoshenko beams. Journal of Sound and Vibration 291, 1041–1060 (2006)CrossRefGoogle Scholar
  3. 3.
    Wang, C.H., Rose, L.R.F.: Wave reflection and transmission in beams containing delamination and inhomogeneity. Journal of Sound and Vibration 264, 851–872 (2003)CrossRefGoogle Scholar
  4. 4.
    Chondros, T.G., Dimarogonas, A.D., Yao, J.: A continuous cracked beam vibration theory. Journal of Sound and Vibration 104(1), 6–23 (1998)Google Scholar
  5. 5.
    Mencik, J.M., Ichchou, M.N.: Multi-mode propagation and diffusion in structures through finite elements. European Journal of Mechanics - A/Solids 24(5), 877–898 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ichchou, M.N., Mencik, J.-M., Zhou, W.J.: Wave finite elements for low and mid-frequency description of coupled structures with damage. Computer Methods in Applied Mechanics and Engineering 198(15-16), 1311–1326 (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Zhou, W.J., Ichchou, M.N., Mencik, J.-M.: Analysis of wave propagation in cylindrical pipes with local inhomogeneities. Journal of Sound and Vibration 319(1-2), 335–354 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhong, W.X., Williams, F.W.: On the direct solution of wave propagation for repetitive structures. Journal of Sound and Vibration 181, 485–501 (1995)CrossRefGoogle Scholar
  9. 9.
    Houillon, L., Ichchou, M.N., Jezequel, L.: Dispersion curves of fluid filled elastic pipes by standard fe models and eigenpath analysis. Journal of Sound and Vibration 281, 483–507 (2005)CrossRefGoogle Scholar
  10. 10.
    Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Mohamed Amine Ben Souf
    • 1
  • Mohamed Ichchou
    • 1
  • Olivier Bareille
    • 1
  • Mohamed Haddar
    • 2
  1. 1.Ecole centrale de LyonEcully CedexFrance
  2. 2.Unité de Mécanique, Modélisation et ProductiqueEcole nationale d’Ingénieurs de SfaxSfaxTunisie

Personalised recommendations