Development of a Computational Recommender Algorithm for Digital Resources for Education Using Case-Based Reasoning and Collaborative Filtering

  • Guadalupe Gutiérrez
  • Lourdes Margain
  • Alberto Ochoa
  • Jesús Rojas
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)


This paper describes the development proposal of a Computational Recommender Algorithm (ReCom), to support user to find the correct Digital Resource of Education (DRE), in this case the learning objects (LO) that meet the needs and study preferences of the user. The search is performed on a database that contains a collection of metadata of learning objects of different topics related to Software Architect. The algorithm ReCom proposed uses the technique Colla borative Filtering (CF) and artificial intelligence technique known as Case-Based Reasoning (CBR) using for it the framework jCOLIBRI2. The preliminary test plan is presented to evaluate the effectiveness of the recommendations for the user, considering the user profile and the value of variables of influence. It also presents the proposal of a mathematical equation to measure the degree of satisfaction of user recommendations.


Recommender System Learning Object User Profile Collaborative Filter Artificial Intelligence Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Casali, A., Gerling, V., Deco, C.Y., Bender, C.: Sistema inteligente para la recomendación de objetos de aprendizaje. Revista Generación Digital 9(1). Edición 16. Enero de 88 2011 (2010) ISSN 1909-9223 Google Scholar
  2. 2.
    Wang, P.: Why recommendation is special? In: Papers from the, Workshop on Recommender Systems, part of the 15 th National Conference on Artificial Intelligence (1998)Google Scholar
  3. 3.
    Aamondt, A.U.P., Enric: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  4. 4.
    Ochoa, A., Hernández, J., Álvarez, F., Burlak, G., Muñoz, J.: Más allá del Razonamiento Basado en Casos y una Apróximación al Modelado de Sociedades utilizando Minería de Datos. In: ADC 2006, pp. 127–136 (2006) ISBN: 968-878-273-4Google Scholar
  5. 5.
    Wiley, D.: Connecting Learning Objects to Instructional Design Theory: A definition, a metaphor, and a taxonomy. In: Wiley, D.A. (ed.) Instructional Use of Learning Objects, E.A.f.I.T (2002)Google Scholar
  6. 6.
    Margain, L., Álvarez, J.M.F., Vanderdonkt, J., Orey, M.: Mirros: Intermediary Model to Recovery Learning Objects. Computación y Sistemas 13(4), 373–384 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guadalupe Gutiérrez
    • 1
  • Lourdes Margain
    • 1
  • Alberto Ochoa
    • 2
  • Jesús Rojas
    • 3
  1. 1.Universidad Politécnica de AguascalientesAguascalientesMéxico
  2. 2.Universidad Autónoma de Ciudad JuárezCiudad JuárezMéxico
  3. 3.Cloud Technologies ConsultingMexico CityMéxico

Personalised recommendations