Distribution and Selection of Colors on a Diorama to Represent Social Issues Using Cultural Algorithms and Graph Coloring

  • Víctor Ricardo Cruz-Álvarez
  • Fernando Montes-Gonzalez
  • Alberto Ochoa
  • Rodrigo Edgar Palacios-Leyva
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

We present a problem know in writing about social modeling associated with the adequate distribution and color selection of societies in a diorama to specify relationships between them; and also between their principal attributes to represent the symbolic capital of a society. Our case study is related to the diversity of cultural patterns described in Memory Alpha. Thus, we use 8 principal attributes with a range of 64 colors. The purpose of this research is to apply the cultural algorithms approach with color graph to solve the proposed problem and subsequently represent the solution within a diorama. The Memory Alpha is conformed by 1087 societies, which permits to demonstrate that the matching of social issues allows correct distribution and color selection. In summary we are proposing an innovative representation for societies location.

Keywords

Orthogonal Array Multiagents System Color Graph Acceptance Function Symbolic Capital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Desmond, A., Moore, J.: Darwin – la vida de un evolucionista atormentado. Generación Editorial, São Paulo, Brazil (1995)Google Scholar
  2. 2.
    Ochoa, A., et al.: Baharastar – Simulador de Algoritmos Culturales para la Minería de Datos Social. In: Proceedings of COMCEV 2007 (2007)Google Scholar
  3. 3.
    Ochoa, A., et al.: Dyoram’s Representation Using a Mosaic Image. The International Journal of Virtual Reality (2009)Google Scholar
  4. 4.
  5. 5.
    Callogerodóttir, Z., Ochoa, A.: Optimization Problem Solving using Predator/Prey Games and Cultural Algorithms. In: NDAM 2003, Reykiavik, Iceland (2007)Google Scholar
  6. 6.
    Hué, T., et al.: The Emergence of Social Network Hierarchy Using Cultural Algorithms. In: VLDB 2006, Seoul, Korea (2006)Google Scholar
  7. 7.
    Vukčević, I., Ochoa, A.: Similar cultural relationships in Montenegro. In: JASSS 2005, England (2005)Google Scholar
  8. 8.
    Dennis, Z.: Culture and Organizations. McGraw-Hill, London (1991)Google Scholar
  9. 9.
    Ponce, J., et al.: Data Mining and Knowledge Discovery in Real Life Applications, Book edited by: J. Ponce, A. Karahoca, p. 438. I-Tech, Vienna (2009) ISBN: 978-3-902613-53-0Google Scholar
  10. 10.
    Ustaoglu, Y.: Simulating the behavior of a minority in Turkish Society. In: ASNA 2009, Zurigo, Svizerra (2009)Google Scholar
  11. 11.
    Nolfi, S., Floreano, D.: Evolutionary Robotic: The Biology, Intelligence, and Technology of Self-Organization Machines. MIT Press, MA (2000)Google Scholar
  12. 12.
    Reynolds, R.G., Sverdlik, W.: Problem Solving Using Cultural Algorithms. In: International Conference on Evolutionary Computation, pp. 645–650 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Víctor Ricardo Cruz-Álvarez
    • 1
  • Fernando Montes-Gonzalez
    • 1
  • Alberto Ochoa
    • 2
  • Rodrigo Edgar Palacios-Leyva
    • 1
  1. 1.Universidad VeracruzanaXalapaMéxico
  2. 2.Universidad Autónoma de Ciudad JuárezCiudad JuárezMéxico

Personalised recommendations