Reflective Relational Learning for Ontology Alignment

  • Andrzej Szwabe
  • Pawel Misiorek
  • Przemyslaw Walkowiak
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

We propose an application of a statistical relational learning method as a means for automatic detection of semantic correspondences between concepts of OWL ontologies. The presented method is based on an algebraic data representation which, in contrast to well-known graphical models, imposes no arbitrary assumption with regard to the data model structure. We use a probabilistic relevance model as the basis for the estimation of the most plausible matches.We experimentally evaluate the proposed method employing datasets developed for the Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, for the task of identifying matches between concepts of AdultMouse Anatomy ontology and NCI Thesaurus ontology on the basis of expert matches partially provided to the system.

Keywords

Relational Learn Context Vector Anatomy Ontology Ontology Alignment External Knowledge Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciesielczyk, M., Szwabe, A.: RI-based Dimensionality Reduction for Recommender Systems. In: Proc. of 3rd International Conference on Machine Learning and Computing, IEEE Press, Singapore (2011)Google Scholar
  2. 2.
    De Raedt, L.: Logical and Relational Learning. Springer (2008)Google Scholar
  3. 3.
    Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured Machine Learning: the Next Ten Years. Machine Learning 73(1), 3–23 (2008)CrossRefGoogle Scholar
  4. 4.
    Euzenat, J., Ferrara, A., Meilicke, C., Nikolov, A., Pane, J., Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Svb-Zamazal, O., Svtek, V., Trojahn dos Santos, C.: Results of the Ontology Alignment Evaluation Initiative 2010. In: Proc. of 5th ISWC Workshop on Ontology Matching (OM), Shanghai, pp. 85–117 (2010)Google Scholar
  5. 5.
    Franz, T., Schultz, A., Sizov, S., Staab, S.: Triplerank: Ranking Semantic Web Data by Tensor Decomposition. In: The Semantic Web-ISWC 2009, pp. 213–228 (2009)Google Scholar
  6. 6.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press (2007)Google Scholar
  7. 7.
    Haenni, R.: Towards a Unifying Theory of Logical and Probabilistic Reasoning. In: ISIPTA, pp. 193–202 (2005)Google Scholar
  8. 8.
    Nickel, M., Tresp, V., Kriegel, H.-P.: A Three-Way Model for Collective Learning on Multi-Relational Data. In: Proceedings of the 28th International Conference on Machine Learning (2011)Google Scholar
  9. 9.
    Singh, A.P., Gordon, G.J.: Relational Learning via Collective Matrix Factorization. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 650–658 (2008)Google Scholar
  10. 10.
    Struyf, J., Blockeel, H.: Relational Learning. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning, pp. 851–857. Springer (2010)Google Scholar
  11. 11.
    Sutskever, I., Salakhutdinov, R., Tenenbaum, J.B.: Modelling Relational Data Using Bayesian Clustered Tensor Factorization. In: Advances in Neural Information Processing Systems, vol. 22 (2009)Google Scholar
  12. 12.
    Szwabe, A., Ciesielczyk, M., Misiorek, P.: Long-Tail Recommendation Based on Reflective Indexing. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 142–151. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, New York (2004)MATHCrossRefGoogle Scholar
  14. 14.
    Ontology Alignment Evaluation Initiative, Campaign (2011), http://oaei.ontologymatching.org/2011/
  15. 15.
    W3C. Web Ontology Language (OWL), http://www.w3.org/2004/OWL

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Szwabe
    • 1
  • Pawel Misiorek
    • 1
  • Przemyslaw Walkowiak
    • 1
  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations