Advertisement

Semantic Graph-Based Approach for Document Organization

  • Erika Velazquez-Garcia
  • Ivan Lopez-Arevalo
  • Victor Sosa-Sosa
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

Actual document search engines base searches on the file name or syntactic content, which means that the word or part of the word to search must exactly match. This article proposes a semantic graph-based method for document search. The approach allows to organize, search, and display documents or groups of documents. Groups are formed according to topics contained in documents.

Keywords

Central Limit Theorem Global Score Latent Dirichlet Allocation Local Score Document Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golemati, M., Katifori, A., Giannopoulou, E.G., Daradimos, I., Vassilakis, C.: Evaluating the Significance of the Windows Explorer Visualization in Personal Information Management Browsing tasks. In: 11th International Conference on Information Visualization, IV 2007, pp. 93–100 (2007), doi:10.1109/IV.2007.46, ISSN 1550-6037 Google Scholar
  2. 2.
    Ravasio, P., Schär, S.G., Krueger, H.: In pursuit of desktop evolution: User problems and practices with modern desktop systems. ACM Trans. Comput.-Hum. Interact. 11(2), 156–180 (2004) ISSN 1073-0516CrossRefGoogle Scholar
  3. 3.
    Yao, Y., Lin, L., Dong, J.: Research on Ontology-Based Multi-source Engineering Information Retrieval in Integrated Environment of Enterprise. In: Int. Conference on Interoperability for Enterprise Soft. and Applications, China, pp. 277–282 (2009)Google Scholar
  4. 4.
    Guzmán, I.O.: Enfoque basado en datos para el aprendizaje de ontologías, Master Thesis. Cinvestav - Tamaulipas. Cd. Victoria, Tamaulipas, México (2010)Google Scholar
  5. 5.
    Shi, B., Fang, L., Yan, J., Wang, P., Dong, C.: Classification of Semantic Documents Based on WordNet. In: International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government, pp. 173–176. IEEE Computer Society (2009)Google Scholar
  6. 6.
    Wang, J.Z., Taylor, W.: Concept Forest: A New Ontology-assisted Text Document Similarity Measurement Method. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 395–401. IEEE Computer Society (2007)Google Scholar
  7. 7.
    Malo, P., Siitari, P., Ahlgren, O., Wallenius, J., Korhonen, P.: Semantic Content Filtering with Wikipedia and Ontologies. In: IEEE International Conference on Data Mining Workshops, pp. 518–526 (2010)Google Scholar
  8. 8.
    Zhou, G.-S., Li, H.-L., Wang, Z.-N., Liu, G.-H.: An efficient intra prediction method for H.264 based on probability and statistics. In: International Conference on Computational Problem-Solving, pp. 413–415 (2010)Google Scholar
  9. 9.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003), JMLR.org zbMATHGoogle Scholar
  10. 10.
    Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43(1), 241–254 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press (2009)Google Scholar
  12. 12.
    Fischer, H., Fischer, H.: Conclusion: The Central Limit Theorem as a Link Between Classical and Modern Probability Theory. In: A History of the Central Limit Theorem, pp. 353–362. Springer, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Hersh, W.R.: Information retrieval: a health and biomedical perspective. Springer (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erika Velazquez-Garcia
    • 1
  • Ivan Lopez-Arevalo
    • 1
  • Victor Sosa-Sosa
    • 1
  1. 1.Information Technology LaboratoryCinvestav - Tamaulipas Scientific and Technological ParkVictoriaMexico

Personalised recommendations