Modeling Shared-Memory Metaheuristic Schemes for Electricity Consumption

  • Luis-Gabino Cutillas-Lozano
  • José-Matías Cutillas-Lozano
  • Domingo Giménez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

This paper tackles the problem of modeling a shared-memory metaheuristic scheme. The use of a model of the execution time allows us to decide at running time the number of threads to use to obtain a reduced execution time. A parameterized metaheuristic scheme is used, so different metaheuristics and hybridations can be applied to a particular problem, and it is easier to obtain a satisfactory metaheuristic for the problem. The model of the execution time and consequently the optimum number of threads depend on a number of factors: the problem to be solved, the metaheuristic scheme and the implementation of the basic functions in it, the computational system where the problem is being solved, etc. So, obtaining a satisfactory model and an autotuning methodology is not an easy task. This paper presents an autotuning methodology for shared-memory parameterized metaheuristic schemes, and its application to a problem of minimization of electricity consumption in exploitation of wells. The model and the methodology work satisfactorily, which allows us to reduce the execution time and to obtain lower electricity consumptions than previously obtained.

Keywords

Execution Time Electricity Consumption Initial Generation Parallel Scheme Reduce Execution Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley Interscience (2005)Google Scholar
  2. 2.
    Almeida, F., Cuenca, J., Giménez, D., Llanes-Castro, A., Martínez-Gallar, J.P.: A Framework for the Application of Metaheuristics to Tasks-to-Processors Assignation Problems. The Journal of Supercomputing (2009) (published online)Google Scholar
  3. 3.
    Almeida, F., Giménez, D., López-Espín, J.J.: A parameterised shared-memory scheme for parameterised metaheuristics. The Journal of Supercomputing (2011) (published online)Google Scholar
  4. 4.
    Cuenca, J., Giménez, D., González, J.: Architecture of an Automatic Tuned Linear Algebra Library. Parallel Computing 30, 187–220 (2004)CrossRefGoogle Scholar
  5. 5.
    Cuenca, J., Giménez, D., Martínez-Gallar, J.P.: Heuristics for work distribution of a homogeneous parallel dynamic programming scheme on heterogeneous systems. Parallel Computing 31, 717–735 (2005)CrossRefGoogle Scholar
  6. 6.
    Clinton Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimizations of software and the ATLAS project. Parallel Computing 27, 3–35 (2001)CrossRefGoogle Scholar
  7. 7.
    Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. Springer (2005)Google Scholar
  8. 8.
    Frigo, M.: FFTW: An Adaptive Software Architecture for the FFT. In: Proceedings of the ICASSP Conference, vol. 3, p. 1381 (1998)Google Scholar
  9. 9.
    Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Kluwer (2003)Google Scholar
  10. 10.
    Raidl, G.R.: A Unified View on Hybrid Metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luis-Gabino Cutillas-Lozano
    • 1
  • José-Matías Cutillas-Lozano
    • 2
  • Domingo Giménez
    • 2
  1. 1.Aguas MunicipalizadasAlicanteSpain
  2. 2.Departamento de Informática y SistemasUniversity of MurciaMurciaSpain

Personalised recommendations