A Hybrid of SVM and SCAD with Group-Specific Tuning Parameter for Pathway-Based Microarray Analysis

  • Muhammad Faiz Misman
  • Mohd Saberi Mohamad
  • Safaai Deris
  • Raja Nurul Mardhiah Raja Mohamad
  • Siti Zaiton Mohd Hashim
  • Sigeru Omatu
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)


The incorporation of pathway data into the microarray analysis had lead to a new era in advance understanding of biological processes. However, this advancement is limited by the two issues in quality of pathway data. First, the pathway data are usually made from the biological context free, when it comes to a specific cellular process (e.g. lung cancer development), it can be that only several genes within pathways are responsible for the corresponding cellular process. Second, pathway data commonly curated from the literatures, it can be that some pathway may be included with the uninformative genes while the informative genes may be excluded. In this paper, we proposed a hybrid of support vector machine and smoothly clipped absolute deviation with group-specific tuning parameters (gSVM-SCAD) to select informative genes within pathways before the pathway evaluation process. Our experiments on lung cancer and gender data sets show that gSVM-SCAD obtains significant results in classification accuracy and in selecting the informative genes and pathways.


Support Vector Machine Linear Discriminant Analysis Penalty Function Feature Selection Method Reproduce Kernel Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, X., Dalkic, E., Wu, M., et al.: Gene module level analysis: identification to networks and dynamics. Curr. Opin. Biotechnol. 19, 482–491 (2008), doi:10.1016/j.copbio.2008.07.011CrossRefGoogle Scholar
  2. 2.
    Misman, M.F., Deris, S., Hashim, S.Z.M., et al.: Pathway-based microarray analysis for defining statistical significant phenotype-related pathways: a review of common approaches. In: Int. Conf. Inf. Manag. Eng. (2009), doi:10.1109/ICIME.2009.103Google Scholar
  3. 3.
    Chen, X., Wang, L., Smith, J.D., et al.: Supervised principle component analysis for gene set enrichment of microarray data with continuous or survival outcome. Bioinformatics 24, 2474–2481 (2008), doi:10.1093/bioinformatics/btn458Google Scholar
  4. 4.
    Mohamad, M.S., Omatu, S., Deris, S., et al.: A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data. IEEE Trans. Inf. Technol. Biomed (2011), doi:10.1109/TITB.2011.2167756Google Scholar
  5. 5.
    Zhang, H.H., Ahn, J., Lin, X., et al.: Gene selection using support vector machines with non-convex penalty. Bioinformatics 22, 88–95 (2006), doi:10.1093/bioinformatics/bti736 Google Scholar
  6. 6.
    Guyon, I., Weston, J., Barnhill, S., et al.: Gene selection for cancer classification using support vector machines. Mach Learn 46, 389–422 (2002), doi:10.1093/bioinformatics/btl386zbMATHCrossRefGoogle Scholar
  7. 7.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996), doi: MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001), doi:10.2307/3085904MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Wahba, G., Lin, Y., Zhang, H.: GACV for support vector machines, or, another way to look at margin-like quantities. In: Smola, A.J., Bartlett, P., Schoelkopf, B., Schurmans, D. (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Wahba, G.: Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV. In: Schoelkopf, A.B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods – Support Vector Learning. MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Tai, F., Pan, W.: Incorporating Prior Knowledge of Predictors into Penalized Classifiers with Multiple Penalty Terms. Bioinformatics 23, 1775–1782 (2007), doi:10.1093/bioinformatics/btm234Google Scholar
  12. 12.
    Pang, H., Lin, A., Holford, M., et al.: Pathway analysis using random forest classification and regression. Bioinformatics 16, 2028–2036 (2006), doi:10.1093/bioinformatics/btl344Google Scholar
  13. 13.
    Battacharjee, A., Richards, W.G., Satunton, J., et al.: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98, 13790–13795 (2001), doi:10.1073/pnas.191502998Google Scholar
  14. 14.
    Becker, N., Werft, W., Toedt, G., et al.: PenalizedSVM: A R-package for feature selection SVM classification. Bioinformatics 25, 1711–1712 (2009), doi:10.1093/bioinformatics/btp286Google Scholar
  15. 15.
    He, Z., Yu, W.: Stable feature selection for biomarker discovery. Computational Biology and Chemistry 34, 215–225 (2010), doi:10.1016/j.compbiolchem.2010.07.002Google Scholar
  16. 16.
    Zucknick, M., Richardson, S., Stronach, E.A.: Comparing the Characteristics of Gene Expression Profiles Derived by Univariate and Multivariate Classification Methods. Statistical Application in Genetics and Molecular Biology 7, 1–28 (2008), doi:10.2202/1544-6115.1307MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Muhammad Faiz Misman
    • 1
  • Mohd Saberi Mohamad
    • 1
  • Safaai Deris
    • 1
  • Raja Nurul Mardhiah Raja Mohamad
    • 1
  • Siti Zaiton Mohd Hashim
    • 2
  • Sigeru Omatu
    • 3
  1. 1.Artificial Intelligence & Bioinformatics Research Group, Faculty of Computer Science and Information SystemsUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Soft Computing Research Group, Faculty of Computer Science and Information SystemsUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Department of Electronics, Information and Communication EngineeringOsaka Institute of TechnologyOsakaJapan

Personalised recommendations