Using GPU for Multi-agent Multi-scale Simulations

  • G. Laville
  • K. Mazouzi
  • C. Lang
  • N. Marilleau
  • L. Philippe
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)


Multi-Agent System (MAS) is an interesting way to create models and simulators and is widely used to model complex systems. As the complex system community tends to build up larger models to fully represent real systems, the need for computing power raise significantly. Thus MAS often lead to long computing intensive simulations. Parallelizing such a simulation is complex and it execution requires the access to large computing resources. In this paper, we present the adaptation of a MAS system, Sworm, to a Graphical Processing Unit.We show that such an adaptation can improve the performance of the simulator and advocate for a more wider use of the GPU in Agent Based Models in particular for simple agents.


Graphic Card Graphical Processing Unit Implementation Microbial Coloni Streaming Multiprocessor Global Memory Access 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edmonds, B., Moss, S.: From KISS to KIDS – An ‘Anti-simplistic’ Modelling Approach. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 130–144. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Amouroux, E.: KIMONO: using the modelling process as an aid for research orientation. PhD thesis, UPMC, Paris, France (2011)Google Scholar
  3. 3.
    North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: A declarative model assembly infrastructure for verification and validation. In: Advancing Social Simulation: The First World Congress, FRG, Heidelberg (2007)Google Scholar
  4. 4.
    Sklar, E.: Netlogo, a multi-agent simulation environment. Artificial Life 13(3), 303–311 (2011)CrossRefGoogle Scholar
  5. 5.
    Gutknecht, O., Ferber, J.: Madkit: a generic multi-agent platform. In: Proceedings of the Fourth International Conference on Autonomous Agents, AGENTS 2000, pp. 78–79. ACM, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Sean, L., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multi-agent simulation environment. Simulation: Transactions of the Society for Modeling and Simulation International 82(7), 517–527 (2005)Google Scholar
  7. 7.
    Bleiweiss, A.: Multi agent navigation on the gpu. In: Game Developers Conference, GDC 2009 (2008)Google Scholar
  8. 8.
    Marilleau, N., Lang, C., Chatonnay, P., Philippe, L.: An agent based framework for urban mobility simulation. In: PDP, France, pp. 355–361 (2006)Google Scholar
  9. 9.
    Blanchart, E., Marilleau, N., Drogoul, A., Perrier, E., Chotte, J.L., Cambier, C.: Sworm: an agent-based model to simulate the effect of earthworms on soil structure. EJSS. European Journal of Soil Science 60, 13–21 (2009)CrossRefGoogle Scholar
  10. 10.
    Bird, N., Perrier, E.: The psf model and soil density scaling. European Journal of Soil Science 54(3), 467–476 (2003)CrossRefGoogle Scholar
  11. 11.
    JOCL: Java bindings for OpenCL (October 11, 2011),
  12. 12.
    JCUDA: Java bindings for CUDA (October 11, 2011),
  13. 13.
    Gómez-Luna, J., González-Linares, J.M., Benavides, J.I., Guil, N.: Parallelization of a Video Segmentation Algorithm on CUDA–Enabled Graphics Processing Units. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 924–935. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Laville
    • 2
  • K. Mazouzi
    • 2
  • C. Lang
    • 2
  • N. Marilleau
    • 1
  • L. Philippe
    • 2
  1. 1.Institut de Recherche pour le Développement (IRD)Paris CedexFrance
  2. 2.Institut FEMTO, CNRS / Université de Franche-ComtéBesançonFrance

Personalised recommendations