Advertisement

Gesture Recognition Using Mobile Phone’s Inertial Sensors

  • Xian Wang
  • Paula Tarrío
  • Eduardo Metola
  • Ana M. Bernardos
  • José R. Casar
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 151)

Abstract

The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way, without the need of a training phase. Furthermore, it was designed to be executed in real-time in resource-constrained devices, and therefore has a low computational complexity. The performance of the system is evaluated offline using a dataset of gestures, and also online, through some user tests with the system running in a smart phone.

Keywords

Mobile Phone Recognition Accuracy Gesture Recognition Dynamic Time Warping Inertial Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pylvänäinen, T.: Accelerometer Based Gesture Recognition Using Continuous HMMs. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 639–646. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Niezen, G., Hancke, G.P.: Gesture recognition as ubiquitous input for mobile phones. In: Proc. of the Workshop on Devices that Alter Perception (2008)Google Scholar
  3. 3.
    Joselli, M., Clua, E.: gRmobile: A Framework for Touch and Accelerometer Gesture Recognition for Mobile Games. In: 2009 VIII Brazilian Symposium on Games and Digital Entertainment, pp. 141–150. IEEE (2009)Google Scholar
  4. 4.
    Niezen, G., Hancke, G.P.: Evaluating and optimising accelerometer-based gesture recognition techniques for mobile devices. In: AFRICON 2009, pp. 1–6. IEEE (2009)Google Scholar
  5. 5.
    Westeyn, T., Brashear, H., Atrash, A., Starner, T.: Georgia Tech gesture toolkit: supporting experiments in gesture recognition. In: Proc. of the 5th Int. Conf. on Multimodal Interfaces, pp. 85–92. ACM (2003)Google Scholar
  6. 6.
    Kauppila, M., Pirttikangas, S., Su, X., Riekki, J.: Accelerometer Based Gestural Control of Browser Application. In: Int. Workshop on Real Field Identification, pp. 2–17 (2007)Google Scholar
  7. 7.
    Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing 5(6), 657–675 (2009)CrossRefGoogle Scholar
  8. 8.
    Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture Recognition with a 3-D Accelerometer. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009. LNCS, vol. 5585, pp. 25–38. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Cho, S.J., Oh, J.K., Bang, W.C., Chang, W., Choi, E., Jing, Y., Cho, J., Kim, D.Y.: Magic wand: a hand-drawn gesture input device in 3-D space with inertial sensors. In: 9th Int. Workshop on Frontiers in Handwriting Recognition, pp. 106–111. IEEE (2004)Google Scholar
  10. 10.
    Kauppila, M., Inkeroinen, T., Pirttikangas, S., Riekki, J.: Mobile phone controller based on accelerative gesturing. Adjunct Proceedings Pervasive, 130–133 (2008)Google Scholar
  11. 11.
    Hofmann, F.G., Heyer, P., Hommel, G.: Velocity Profile Based Recognition of Dynamic Gestures with Discrete Hidden Markov Models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, pp. 81–95. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a Wii controller. In: Proc. of the 2nd Int. Conf. on Tangible and Embedded Interaction, pp. 11–14. ACM (2008)Google Scholar
  13. 13.
    Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customisation in accelerometer based gesture interaction. In: Proc. of the 3rd Int. Conf. on Mobile and Ubiquitous Multimedia, pp. 25–31. ACM (2004)Google Scholar
  14. 14.
    Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Di Marca, S.: Accelerometer-based gesture control for a design environment. Personal and Ubiquitous Computing 10(5), 285–299 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xian Wang
    • 1
  • Paula Tarrío
    • 1
  • Eduardo Metola
    • 1
  • Ana M. Bernardos
    • 1
  • José R. Casar
    • 1
  1. 1.Data Processing and Simulation Group, ETSI. TelecomunicaciónUniversidad Politécnica de MadridMadridSpain

Personalised recommendations