Advertisement

Adaptive Vehicle Mode Monitoring Using Embedded Devices with Accelerometers

  • Artis Mednis
  • Georgijs Kanonirs
  • Leo Selavo
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 156)

Abstract

Monitoring of specific attributes such as vehicle speed and fuel consumption as well as cargo safety is an important problem for transport domain. This task is performed using specific multiagent monitoring systems. To ensure secure operation of such systems they should have autonomous and adaptive behaviour.

The paper is describing an adaptive agent for vehicle mode monitoring using embedded devices with accelerometers. Data processing algorithm and adaptive functionality are discussed and their evaluation is presented with vehicle standing mode detection as high as true positive rate of 97% using real world data. Optimization of parameters for data processing algorithm is performed as well as suggestions for their application described.

Keywords

Multiagent System Vehicle Speed Vehicle Type Accelerometer Data Real World Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, P., Catterson, V., McArthur, S.: Integrating an agent-based wireless sensor network within an existing multi-agent condition monitoring system. In: 15th International Conference on Intelligent System Applications to Power Systems, ISAP 2009, pp. 1–6 (2009), doi:10.1109/ISAP.2009.5352888Google Scholar
  2. 2.
    Chowdhary, M., Zhang, Q., Chansarkar, M., Zhang, G.: Systems and methods for detecting a vehicle static condition (2011), http://patents.com/us-7979207.html
  3. 3.
    Fokum, D.T., Frost, V.S., Depardo, D., Kuehnhausen, M., Oguna, A.N., Searl, L.S., Komp, E., Zeets, M., Deavours, D., Evans, J.B., Minden, G.J.: Experiences from a transportation security sensor network field trial. Tech. rep. (2009)Google Scholar
  4. 4.
    Gleason, S., Gebre-Egziabher, D.: GNSS applications and methods. In: GNSS Technology and Applications. Artech House (2009), http://books.google.com/books?id=juXAE3SHQroC
  5. 5.
    Martín, P., Sánchez, M., Álvarez, L., Alonso, V., Bajo, J.: Multi-Agent System For Detecting Elderly People Falls Through Mobile Devices. In: Novais, P., Preuveneers, D., Corchado, J.M. (eds.) ISAmI 2011. AISC, vol. 92, pp. 93–99. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-19937-0_12, doi:10.1007/978-3-642-19937-0_12CrossRefGoogle Scholar
  6. 6.
    Mednis, A., Strazdins, G., Zviedris, R., Kanonirs, G., Selavo, L.: Real time pothole detection using android smartphones with accelerometers. In: DCOSS, pp. 1–6. IEEE (2011)Google Scholar
  7. 7.
    Rammal, A., Trouilhet, S., Singer, N., Pécatte, J.M.: An adaptive system for home monitoring using a multiagent classification of patterns. Int. J. Telemedicine Appl. 2008, 3:1–3:8 (2008), http://dx.doi.org/10.1155/2008/136054, doi:10.1155/2008/136054Google Scholar
  8. 8.
    Sánchez, M., Martín, P., Álvarez, L., Alonso, V., Zato, C., Pedrero, A., Bajo, J.: A New Adaptive Algorithm for Detecting Falls through Mobile Devices. In: Corchado, J.M., Pérez, J.B., Hallenborg, K., Golinska, P., Corchuelo, R. (eds.) Trends in Practical Applications of Agents and Multiagent Systems. AISC, vol. 90, pp. 17–24. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-19931-8_3, doi:10.1007/978-3-642-19931-83CrossRefGoogle Scholar
  9. 9.
    Schwartz, R.: Vehicle state detection (2010), http://ip.com/patapp/US20100204877
  10. 10.
    Wang, J.H., Gao, Y.: Multi-sensor data fusion for land vehicle attitude estimation using a fuzzy expert system. Data Science Journal 4, 127–139 (2005)CrossRefGoogle Scholar
  11. 11.
    Zviedris, R., Elsts, A., Strazdins, G., Mednis, A., Selavo, L.: LynxNet: Wild Animal Monitoring Using Sensor Networks. In: Marrón, P.J., Voigt, T., Corke, P.I., Mottola, L. (eds.) REALWSN 2010. LNCS, vol. 6511, pp. 170–173. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Digital Signal Processing LaboratoryInstitute of Electronics and Computer ScienceRigaLatvia
  2. 2.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations