Advertisement

Computing Real-Time Dynamic Origin/Destination Matrices from Vehicle-to-Infrastructure Messages Using a Multi-Agent System

  • Rafael Tornero
  • Javier Martínez
  • Joaquín Castelló
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 156)

Abstract

Dynamic Origin/Destination matrices are one of the most important parameters for efficient and effective transportation system management. These matrices describe the vehicle flow between different points within a region of interest for a given period of time. Usually, dynamic O/D matrices are estimated from traffic counts provided by induction loop detectors, home interview and/or license plate surveys. Unfortunately, estimation methods take O/D flows as time invariant for a certain number of intervals of time, which cannot be suitable for some traffic applications. However, the advent of information and communication technologies (e.g., vehicle-to-infrastructure dedicated short range communications –V2I) to the transportation system domain has opened new data sources for computing O/D matrices. Taking the advantages of this technology, we propose in this paper a multi-agent system that computes the instantaneous O/D matrix of any road network equipped with V2I technology for every time period and any day in real-time. The implementation was carried out using JADE platform.

Keywords

Road Network Multiagent System Vehicle Route Problem Road Side Unit Transportation Research Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Car-to-car communication consortium, http://www.car-to-car.org/
  2. 2.
    Jade: Java agent development framework, http://jade.tilab.com/
  3. 3.
    Ntp: Network time protocol, http://www.ntp.org/
  4. 4.
    Highway capacity manual (2010)Google Scholar
  5. 5.
    Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control. IEEE Computational Intelligence Magazine 5(4), 43–51 (2010)Google Scholar
  6. 6.
    Barbucha, D., Jędrzejowicz, P.: Agent-Based Approach to the Dynamic Vehicle Routing Problem. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.) 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009). AISC, vol. 55, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Barceló, J., Montero, L., Marqués, L., Carmona, C.: Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring. Transportation Research Record: Journal of the Transportation Research Board 2175, 19–27 (2010)CrossRefGoogle Scholar
  8. 8.
    Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: Sumo - simulation of urban mobility: An overview. In: SIMUL 2011, The Third International Conference on Advances in System Simulation, Barcelona, Spain, pp. 63–68 (2011)Google Scholar
  9. 9.
    Bhouri, N., Balbo, F., Pinson, S.: Towards Urban Traffic Regulation Using a Multi-agent System. In: Demazeau, Y., Pechoucek, M., Corchado, J., Prez, J. (eds.) Advances on Practical Applications of Agents and Multiagent Systems. AISC, vol. 88, pp. 179–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Durfee, E.H.: Distributed Problem Solving and Planning. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp. 118–149. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Hu, S.R., Madanat, S.M., Krogmeier, J.V., Peeta, S.: Estimation of dynamic assignment matrices and od demands using adaptive kalman filtering. ITS Journal - Intelligent Transportation Systems Journal 6(3), 281–300 (2001), doi:10.1080/10248070108903696zbMATHCrossRefGoogle Scholar
  12. 12.
    Jian, S., Yu, F.: A Novel OD Estimation Method Based on Automatic Vehicle Identification Data. In: Chen, R. (ed.) ICICIS 2011 Part II. CCIS, vol. 135, pp. 461–470. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Kutz, M. (ed.): Handbook of Transportation Engineering, vol. II. McGraw-Hill (2011)Google Scholar
  14. 14.
    Kwon, J., Varaiya, P.: Real-time estimation of origin-destination matrices with partial trajectories from electronic toll collection tag data. Transportation Research Record: Journal of the Transportation Research Board 1923, 119–126 (2005)CrossRefGoogle Scholar
  15. 15.
    Lin, P.W., Chang, G.L.: A generalized model and solution algorithm for estimation of the dynamic freeway origin destination matrix. Transportation Research Part B: Methodological 41(5), 554–572 (2007)CrossRefGoogle Scholar
  16. 16.
    Sherali, H.D., Park, T.: Estimation of dynamic origin-destination trip tables for a general network. Transportation Research Part B: Methodological 35(3), 217–235 (2001)CrossRefGoogle Scholar
  17. 17.
    Zeddini, B., Yassine, A., Temani, M., Ghedira, K.: An agent-oriented approach for the dynamic vehicle routing problem. In: International Workshop on Advanced Information Systems for Enterprises, IWAISE 2008, pp. 70–76 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rafael Tornero
    • 1
  • Javier Martínez
    • 1
  • Joaquín Castelló
    • 1
  1. 1.Robotics and Information and Communication Technology InstituteUniversitat de ValènciaPaternaSpain

Personalised recommendations