Numeric Bounds Analysis with Conflict-Driven Learning

  • Vijay D’Silva
  • Leopold Haller
  • Daniel Kroening
  • Michael Tautschnig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7214)

Abstract

This paper presents a sound and complete analysis for determining the range of floating-point variables in control software. Existing approaches to bounds analysis either use convex abstract domains and are efficient but imprecise, or use floating-point decision procedures, and are precise but do not scale. We present a new analysis that elevates the architecture of a modern SAT solver to operate over floating-point intervals. In experiments, our analyser is consistently more precise than a state-of-the-art static analyser and significantly outperforms floating-point decision procedures.

Keywords

Decision Procedure Interval Analysis Abstract Interpretation Abstract Domain Bound Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aiken, A.: Introduction to set constraint-based program analysis. Science of Computer Programming 35, 79–111 (1999)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Balakrishnan, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Refining the control structure of loops using static analysis. In: Proc. of the Intl. Conf. on Embedded Software, pp. 49–58. ACM Press (2009)Google Scholar
  3. 3.
    Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In: Proc. of Software Testing and Analysis, pp. 3–14. ACM Press (2008)Google Scholar
  4. 4.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded Software. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Cotton, S.: Natural Domain SMT: A Preliminary Assessment. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based program analysis by abstract interpretation. In: Proc. of Functional Programming Languages and Computer Architecture, pp. 170–181. ACM Press (June 1995)Google Scholar
  9. 9.
    Goubault, É., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Refining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Gulavani, B.S., Rajamani, S.K.: Counterexample Driven Refinement for Abstract Interpretation. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 474–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Gulwani, B.S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants for bound analysis. In: Proc. of Programming Language Design and Implementation, pp. 375–385. ACM Press (June 2009)Google Scholar
  13. 13.
    Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via satisfiability modulo path programs. In: Proc. of Principles of Programming Languages, pp. 71–82. ACM Press (2010)Google Scholar
  14. 14.
    Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 338–353. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Logics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Transactions on Programming Languages and Systems 29(5), 26 (2007)CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static Analysis in Disjunctive Numerical Domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 3–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Siegel, S.F., Zirkel, T.K.: A functional equivalence verification suite for high-performance scientific computing. Technical Report UDEL-CIS-2011/02, Department of Computer and Information Sciences, University of Delaware (2011)Google Scholar
  22. 22.
    Simon, A., King, A.: Widening polyhedra with landmarks. In: Proc. of the Asian Symposium on Programming Languages and Systems, pp. 166–182 (2006)Google Scholar
  23. 23.
    Wang, C., Yang, Z., Gupta, A., Ivančić, F.: Using Counterexamples for Improving the Precision of Reachability Computation with Polyhedra. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 352–365. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vijay D’Silva
    • 1
  • Leopold Haller
    • 1
  • Daniel Kroening
    • 1
  • Michael Tautschnig
    • 1
  1. 1.Computer Science DepartmentUniversity of OxfordUK

Personalised recommendations