A Bit Too Precise? Bounded Verification of Quantized Digital Filters

  • Arlen Cox
  • Sriram Sankaranarayanan
  • Bor-Yuh Evan Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7214)


Digital filters are simple yet ubiquitous components of a wide variety of digital processing and control systems. Errors in the filters can be catastrophic. Traditionally digital filters have been verified using methods from control theory and extensive testing. We study two alternative verification techniques: bit-precise analysis and real-valued error approximations. In this paper, we empirically evaluate several variants of these two fundamental approaches for verifying fixed-point implementations of digital filters. We design our comparison to reveal the best possible approach towards verifying real-world designs of infinite impulse response (IIR) digital filters. Our study reveals broader insights into cases where bit-reasoning is absolutely necessary and suggests efficient approaches using modern satisfiability-modulo-theories (SMT) solvers.


Impulse Response Digital Filter Quantization Error Linear Arithmetic Ellipsoidal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akbarpour, B., Tahar, S.: Error analysis of digital filters using HOL theorem proving. Journal of Applied Logic 5(4), 651–666 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alegre, F., Feron, E., Pande, S.: Using ellipsoidal domains to analyze control systems software. CoRR, abs/0909.1977 (2009)Google Scholar
  3. 3.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design and Implementation of a Special-Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded Software (Invited Chapter). In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In: Formal Methods in Computer Aided Design (FMCAD), pp. 69–76 (2009)Google Scholar
  5. 5.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications. In: Brazilian Mathematics Colloquium Monograph, IMPA, Rio de Janeiro (1997)Google Scholar
  7. 7.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Fang, C., Rutenbar, R., Chen, T.: Fast, accurate static analysis for fixed-point finite-precision effects in DSP designs. In: International Conference on Computer-Aided Design (ICCAD), pp. 275–282 (2003)Google Scholar
  9. 9.
    Feret, J.: Static Analysis of Digital Filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. JSAT 1(3-4), 209–236 (2007)Google Scholar
  11. 11.
    Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kinsman, A.B., Nicolici, N.: Finite precision bit-width allocation using SAT-modulo theory. In: Design, Automation and Test in Europe (DATE), pp. 1106–1111 (2009)Google Scholar
  13. 13.
    Lee, D., Gaffar, A., Cheung, R., Mencer, O., Luk, W., Constantinides, G.: Accuracy-guaranteed bit-width optimization. IEEE Trans. on CAD of Integrated Circuits and Systems 25(10), 1990–2000 (2006)CrossRefGoogle Scholar
  14. 14.
    Monniaux, D.: Compositional Analysis of Floating-Point Linear Numerical Filters. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 199–212. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Monniaux, D.: On Using Floating-Point Computations to Help an Exact Linear Arithmetic Decision Procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 570–583. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals & Systems, 2nd edn. Prentice Hall (1997)Google Scholar
  17. 17.
    Pang, Y., Radecka, K., Zilic, Z.: Optimization of imprecise circuits represented by taylor series and real-valued polynomials. IEEE Trans. on CAD of Integrated Circuits and Systems 29(8), 1177–1190 (2010)CrossRefGoogle Scholar
  18. 18.
    Pang, Y., Radecka, K., Zilic, Z.: An efficient hybrid engine to perform range analysis and allocate integer bit-widths for arithmetic circuits. In: Asia South Pacific Design Automation Conference (ASP-DAC), pp. 455–460 (2011)Google Scholar
  19. 19.
    Smith, J.: Introduction to Digital Filters: With Audio Applications. W3K Publishing (2007)Google Scholar
  20. 20.
    Sung, W., Kum, K.: Simulation-based word-length optimization method for fixed-point digital signal processing systems. IEEE Transactions on Signal Processing 43(12), 3087–3090 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arlen Cox
    • 1
  • Sriram Sankaranarayanan
    • 1
  • Bor-Yuh Evan Chang
    • 1
  1. 1.University of ColoradoBoulderUSA

Personalised recommendations