Abstract

Probabilistic model checkers like PRISM check the satisfiability of probabilistic CTL (pCTL) formulas against discrete-time Markov chains. We prove soundness and completeness of their underlying algorithm in Isabelle/HOL. We define Markov chains given by a transition matrix and formalize the corresponding probability measure on sets of paths. The formalization of pCTL formulas includes unbounded cumulated rewards.

Keywords

Markov Chain Model Check Probability Space Proof Assistant Linear Equation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baier, C.: On the Algorithmic Verification of Probabilistic Systems. Habilitation, Universität Mannheim (1998)Google Scholar
  2. 2.
    Bauer, H.: Probability Theory. de Gruyter (1995)Google Scholar
  3. 3.
    Chou, C.T., Peled, D.: Formal verification of a partial-order reduction technique for model checking. Journal of Automated Reasoning 23(3-4), 265–298 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. Ph.D. thesis, King’s College, University of Cambridge (2009)Google Scholar
  5. 5.
    Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Tech. Rep. SICS/R90013, Swedish Institute of Computer Science (December 1994)Google Scholar
  7. 7.
    Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis, University of Cambridge (2002)Google Scholar
  8. 8.
    Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In: van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 135–151. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Hözl, J., Nipkow, T.: Markov models. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs, formal proof development (January 2012), http://afp.sf.net/entries/Markov_Models.shtml
  10. 10.
    Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68, 90–104 (2011)CrossRefGoogle Scholar
  11. 11.
    Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Symposium on Operating Systems Principles 2009, pp. 207–220 (2009)Google Scholar
  12. 12.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor Sets of Dynamic Pushdown Networks with Tree-Regular Constraints. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43, 363–446 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. AMS (2006)Google Scholar
  17. 17.
    Liu, L., Hasan, O., Tahar, S.: Formalization of Finite-State Discrete-Time Markov Chains in HOL. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 90–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Mhamdi, T., Hasan, O., Tahar, S.: Formalization of Entropy Measures in HOL. In: van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 233–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Nipkow, T.: Gauss-Jordan elimination for matrices represented as functions. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs, formal proof development (August 2011), http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml
  20. 20.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Reif, W., Schellhorn, G., Vollmer, T., Ruf, J.: Correctness of efficient real-time model checking. J. UCS 7(2), 194–209 (2001)MATHGoogle Scholar
  22. 22.
    Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi Automata for LTL Model Checking Verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424–439. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Sprenger, C.: A Verified Model Checker for the Modal μ-Calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Thiemann, R., Sternagel, C.: Certification of Termination Proofs Using CeTA. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Hölzl
    • 1
  • Tobias Nipkow
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations