Concepts of Quantum Computers

  • Vladimir G. Plekhanov
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Information is quantized in classical digital information processing as well as in quantum information processing. As is well known in analogy to the classical bit, the elementary quantum information processing is called a qubit.


Nuclear Spin Quantum Algorithm CNOT Gate Toffoli Gate Hadamard Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)zbMATHGoogle Scholar
  2. 2.
    O. Morsch, Quantum Bits and Quantum Secrets: How Quantum Physics Revolutionizing Codes and Computers (Wiley, Weinham, 2008)zbMATHGoogle Scholar
  3. 3.
    B. Schumacher, Quantum coding. Phys. Rev. A51, 2738–2747 (1995)MathSciNetADSGoogle Scholar
  4. 4.
    V.G. Plekhanov, Quantum information and quantum computation. in Transaction of Computer Science College, Tallinn, 2004, pp. 161–282Google Scholar
  5. 5.
    B.B. Kadomtsev, Dynamics and Information (UFN, Moscow, 1997). (in Russian)Google Scholar
  6. 6.
    D.P. Di Vincenzo, The physical implementation of quantum computation. Fortschr. der Physik (Prog. Phys.) 48, 771–783 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    C.A. Perez-Delgado, P. Kok, Quantum computers: definition and implementation. Phys. Rev. A83, 012303–012315 (2011)Google Scholar
  8. 8.
    K. Goser, P. Glösekötter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)Google Scholar
  9. 9.
    G.E. Moore, Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965)Google Scholar
  10. 10.
    M. Lacham, M.E. Newman, C. Moore, Why any sufficiently advanced technology is indistinguishable from noise. Am. J. Phys. 72, 1290–1293 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958)zbMATHGoogle Scholar
  12. 12.
    A. Barenco, C.H. Bennett, R. Cleve et al., Elementary gates for quantum computation. Phys. Rev. A52, 3457–3467 (1995)ADSGoogle Scholar
  13. 13.
    ArXiv, quant - ph/9503016Google Scholar
  14. 14.
    S.L. Braunstein, Quantum Computations, Encyclopedia of Applied Physics, Update (Wiley, New York, 1999), pp. 239–256Google Scholar
  15. 15.
    V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mat. Sci. 51, 287–426 (2006)CrossRefGoogle Scholar
  16. 16.
    D. Aharonov, Quantum Computation. in Annual Reviews of Computational Physics VI, ed. by D. Stauffer (Singapore, World Scientific, 1998), pp. 143–184Google Scholar
  17. 17.
    D. Aharonov, Adiabatic quantum computer. SIAM J. Comput. 37, 166–194 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    D. Aharonov, Lanl/arXiv/ quant-ph/0405098Google Scholar
  19. 19.
    D. DiVincenzo, Topics in quantum computers. in Mesoscopic Electron Transport, Vol. 345, NATO ASI Series E, ed. by L. Sohn, L. Kouwenhoven, G. Schon, (Dordrecht, Kluwer, 1997), p. 657Google Scholar
  20. 20.
    D. DiVincenzo, arXiv: cond-mat/9612125. Vol. 1, 12 (Dec 1996)Google Scholar
  21. 21.
    D. DiVincenzo, Quantum computers and quantum coherence. J. Magn. Magn. Mats. 200, 202–216 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    H.-K. Lo, T. Spiller, S. Popescu (eds.), Introduction to Quantum Computation and Quantum Information (World Scientific, London, 1998)Google Scholar
  23. 23.
    Pellizari T., Quantum computers, error-correction and networking: quantum optical approaches, in [22], pp. 270–311Google Scholar
  24. 24.
    Toffoli T., Reversible computing. in Automata, Languages and Programming, Seventh Colloqium, Lecture Notes in Computer Science, Vol. 84, ed. by J. de Bakker, J. van Leeuven (Berlin, Springer, 1980), pp. 632–644Google Scholar
  25. 25.
    T. Toffoli, Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 13–23 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    J. Grashka, Quantum Computing (McGraw-Hill, New York, 1999)Google Scholar
  27. 27.
    D. Deutsch, Quantum computational networks. Proc. R. Soc. (Lond.) A425, 73–90 (1989)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    V. Vedral, M. Plenio, Basics of quantum computation. Prog. Quant. Electron. 22, 1–40 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    M.V. Plenio, P.L. Knight, Limits to quantum computation due to decoherence, in [31], pp. 227–232Google Scholar
  30. 30.
    C. Macchiavello, G.M. Palma, Error correction and fault-tolerant computation, ibid, pp. 232–242Google Scholar
  31. 31.
    D. Bouwmeester, A.K. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, New York, 2000)zbMATHGoogle Scholar
  32. 32.
    S. Datta, B. Das, Electronic analog of the electro optic modulator. Appl. Phys. Lett. 56, 665–671 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    M. Johnson, Bipolar spin switch. Science 260, 320–323 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    M. Johnson, The all-metal spin transistor. IEEE Spectr. 31, 47–51 (1994)CrossRefGoogle Scholar
  35. 35.
    M. Johnson (ed.), Magnetoelectronics (Academic Press, New York, 2004)Google Scholar
  36. 36.
    D. DiVincenzo, Quantum computing and single-qubit measurements using the spin-filter effect. J. Appl. Phys. 85, 4785–4787 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    S.Das Sarma, J. Fabian, X. Hu, I. Žutic , Spin electronics and spin computation, Solid State Commun. 119, 207–215, 2001Google Scholar
  38. 38.
    D.D. Awschalom, D. Loss, N. Samarth (eds.), Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002)Google Scholar
  39. 39.
    N. Samarth, An introduction to semiconductor spintronics. in Solid State Physics, Vol. 58, ed. by H. Ehrenreich, F. Spaepen (Academic Press, New York, 2004)Google Scholar
  40. 40.
    G.A. Prinz, Magnetoelectron. Sci. 282, 1660–1663 (1998)Google Scholar
  41. 41.
    I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 78, 323–410 (2004)Google Scholar
  42. 42.
    M.E. Flatte, J.M. Byers, W.H. Lau, in Semiconductor Spintronics and Quantum Computation, ed. by D.D. Awschalom, D. Loss, N. Samarth (Springer, New York, 2002)Google Scholar
  43. 43.
    B.P. Zakharchenya, V.L. Korenev, Integrating magnetism into semiconductor electronics, Uspekhi Fiz. Nauk (Mosc.) 175, 629–635, 2005 (in Russian)Google Scholar
  44. 44.
    M. Johnson, Spintronics. J. Phys. Chem. B109, 14278–14291 (2005)Google Scholar
  45. 45.
    M.I. Dyakonov (ed.), Spin Physics in Semiconductors (Springer, New York, 2008)Google Scholar
  46. 46.
    S. Bandyopadhyay, M. Cahay, Introduction to Spintronics (CRC, Broken Sound Parkway, 2008)Google Scholar
  47. 47.
    S. Das Sarma, J. Fabian, X. Hu, et al., Theoretical perspectives on spintronics and spin-polarized transport. IEEE Trans. Magn. 36, 2821–2827 (2000)Google Scholar
  48. 48.
    S. Maekawa (ed.), Concepts in Spin Electronics (Oxford UniversityPress, Oxford, 2006)zbMATHGoogle Scholar
  49. 49.
    G. Burkhard, H.A. Engel, D. Loss, Spintronics and quanrum dots for quantum computing and quantum communication. Fortsch. Phys. 48, 965–980 (2000). This is a special issue on Experimental Proposals for Quantum Computations. ed. by S.L. Braunstein, H.-K. LoGoogle Scholar
  50. 50.
    G. Burkhard, H.A. Engel, D. Loss, Spintronics, quantum computing, and quantum communication in quantum dots, in [31], pp. 241–265Google Scholar
  51. 51.
    D.P. DiVincenzo, D. Loss, Quantum computers and quantum coherence. J. Magn. Magn. Matls. 200, 202–215 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    R. Hanson, Electron Spin in Semiconductor Quantum Dot, Ph.D. Thesis, Delft University of technology, The Netherland, 2005Google Scholar
  53. 53.
    D. Deutsch, Quantum theory, the church—turing principle and the universal quantum computer. Proc. Roy. Soc. (Lond.) 400, 97–117 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. 54.
    D. Deutsch, The Fabric of Reality (Penguin Press, Allen Line, 1998)Google Scholar
  55. 55.
    P. Benioff, The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machine. J. Stat. Phys. 22, 563–591 (1980)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    P. Benioff, Quantum mechanical Hamiltonian models of Turing machine, ibid, 29, 515–546 (1982)Google Scholar
  57. 57.
    D. Deutsch, R. Jozsa, Rapid solution of problems by quantum computation. Proc. R. Soc. (Lond.) A439, 553–448 (1992)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    R. Cleve, A. Ekert, C. Macciavello, M. Mosca, Quantum algorithms revisited. Proc. R. Soc. (Lond.) A454, 339–354 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    D.R. Simon, On the power of quantum computation. in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Los Alamitos, IEEE Computer Society Press, !994, pp. 116–123Google Scholar
  60. 60.
    D.R. Simon, On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    P. Shor, Polynomial-time algorithms for prime factorization and dicrete logarithms on a quantum computer. in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Los Alamitos, IEEE Computer Society Press, !994, pp. 124–134Google Scholar
  62. 62.
    Lanl/arXiv/quant-ph/ 9508027Google Scholar
  63. 63.
    P. Shor, IEEE Press SIAM J. Comp. 26, 1484–1509 (1997)Google Scholar
  64. 64.
    V. G. Plekhanov, Isotopes in Condensed Matter (Springer, Heidelberg, 2012)Google Scholar
  65. 65.
    K.A. Valiev, A.A. Kokin, Quantum Computers: Hopes and Reality (RC Dynamics, Moscow, 2001). (in Russian)Google Scholar
  66. 66.
    L.K. Grover, A fast quantum mechanica algorithm for database search. in Proceedings of the 28th ACM Symposium on Theory of Computation, New York, Association for Computing, Machinery, 1999, pp. 212–219Google Scholar
  67. 67.
    L.K. Grover, Lanl, arXiv/quant-ph/9605043Google Scholar
  68. 68.
    L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)ADSCrossRefGoogle Scholar
  69. 69.
    M. le Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2006)zbMATHCrossRefGoogle Scholar
  70. 70.
    A. Ekert, R. Jozsa, Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996)MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    D. Beckman, A.N. Chari, S. Devabhaktuni et al., Efficient networks for quantum factoring. Phys. Rev. A54, 1034–1063 (1996)MathSciNetADSGoogle Scholar
  72. 72.
    A. Ekert, P. Hayden, H. Inamori, Basic concepts in quantum computation, Lanl/ArXiv/quant-ph/ 0011013Google Scholar
  73. 73.
    S.J. Lomomnaco, Jr., Shor’s quantum factoting algorithm version, Lanl/ArXiv/quant-ph/0010034Google Scholar
  74. 74.
    Steane A., Quantum Computing (RCD Press, Moscow, 2000) (in Russian)Google Scholar
  75. 75.
    J. Eisert, M.M. Wolf, Quantum Computing. in Handbook of Nature-Inspired and Innovative Computing, Berlin, 2006Google Scholar
  76. 76.
    J. Stolze, D. Suter, Quantum Computing (A Short Course from Theory to Experiment)(Wiley, Weiheim, 2008)zbMATHGoogle Scholar
  77. 77.
    N. Yanofsky, M. Manucci, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2008)zbMATHCrossRefGoogle Scholar
  78. 78.
    D.E. Knuth, The Art of Computer Programming: Semiempirical Algorithms, vol. 2 (Addison-Wesley, New York, 1981)Google Scholar
  79. 79.
    D. Coppersmith, An approximate Fourier transform useful in quantum factiringm IBM Research Report RC 19642, 1994Google Scholar
  80. 80.
    S. Hallgren, Polynomial-time quantum algorithmz for Pell’s equation and the principal ideal problem. in Proceedings of the 35th Annual ACM Symposium on Theory of Computing, New York, Association for Computing Machinery Press, 2002, pp. 653–658Google Scholar
  81. 81.
    O. Regev, Quantum computation and lattice problems. in Proceedings of the 43th Annual Symposium on the Foundation of Computer Science Los Alamitos, IEEE Computer Science Press, 2002, pp. 520–530Google Scholar
  82. 82.
    M. Gridni, L. Schulman, M. Vasirani et al., Quantum mechanical algorithms for the nonabelian hidden subgroup problem. in Proceedings of the 33rd ACM Symposium on Theory of Computing, New York, ACM Press, 2001, pp. 68–74Google Scholar
  83. 83.
    M. Ettinger, P. Hoyer, E. Knill, The quantum query complexity of the hidden subgroup problem is polynomial, Lanl/arXiv/quant-ph/0401083Google Scholar
  84. 84.
    A. Kuperberg, Subexponential-time quantum algorithm for the dihedral hidden subgroup problem. Lanl/arXiv/quant-ph/0302112Google Scholar
  85. 85.
    E. Farhi, J. Goldstone, S. Guthman, et al., Quantum computation by adiabatic evolution, Lanl/arXiv/quant-ph/ 0001106Google Scholar
  86. 86.
    W. van Dam, M. Mosca, U. Vasirani, How powerful is adiabatic quantum computation? in Proceedings of the 42nd Annual Symposium on the Foundations of Computer Science, Los Alamitos, IEEE Computer Society Press, 2001, pp. 279–287Google Scholar
  87. 87.
    W. van Dam, U. Vazirani, Limits on quantum adiabatic optimization. in 5th Workshop on Quantum Information Processing (QIP 2002), Yorktown Heights, New YorkGoogle Scholar
  88. 88.
    B. Reichrardt, The quantum adiabatic optimization algorithm and local minima. in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, 2004Google Scholar
  89. 89.
    D. Aharonov, A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Lanl/arXiv/quant-ph/ 0301023Google Scholar
  90. 90.
    D. Aharonov, W. van Dam, J. Kempe et al., Adiabatic quantum computation is equivalent to standard computation. SIAM J. Comput. 37, 166–194 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    D. Aharonov, W. van Dam, J. Kempe et al., Lanl/arXiv/quant-ph/ 0405098 (2008)Google Scholar
  92. 92.
    G. Beneti, G. Casati, G. Strini, Principles of Quantum Computation and Information (World Scientific Publishing, Singapore, 2005)Google Scholar
  93. 93.
    J.W. Emsley, J.C. Lindon, NMR Spectroscopy Using Liquid Crystals Solvents (Pergamon Press, Oxford, 1975)Google Scholar
  94. 94.
    M. Levitt, Spin Dynamics (Basics of Nuclear Magnetic Resonance (Wiley, New York, 2001)Google Scholar
  95. 95.
    R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987)Google Scholar
  96. 96.
    R. Freeman, Shaped radiofrequency pulses in high resolution NMR. Prog. NMR Spectr. 32, 59–106 (1998)CrossRefGoogle Scholar
  97. 97.
    I.L. Chuang, N. Gershenfeld, M. Kubinec, Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998)ADSCrossRefGoogle Scholar
  98. 98.
    I.L. Chuang, N. Gershenfeld, M. Kubinec, Bulk quantum computation with NMR: theory and experiment. Proc. R. Soc. (Lond.) A454, 447–467 (1998)ADSCrossRefGoogle Scholar
  99. 99.
    I. Chuang, Y. Yamamoto, Simple quantum computer. Phys. Rev. A52, 3489–3496 (1995)ADSGoogle Scholar
  100. 100.
    L. Vandersypen, M. Steffen, G. Breita et al., Experimental realization of Shor’s quantum factoring algorithm using NMR. Nature 414, 883–887 (2001)ADSCrossRefGoogle Scholar
  101. 101.
    D. Esteve, J.M. Raimond, J. Dalibard (eds.), Quantum Coherence and Information Processing (Elsevier, London, 2004)Google Scholar
  102. 102.
    I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–27 (2005)CrossRefGoogle Scholar
  103. 103.
    T.C. Ralph, Quantum optical systems for the implementation of quantum information processing. Rep. Prog. Phys. 69, 853–898 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    Steane A.M., The ion trap quantum information processor, Appl. Phys. B64, 623–642 (1997)Google Scholar
  105. 105.
    H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)MathSciNetADSCrossRefGoogle Scholar
  106. 106.
    J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSCrossRefGoogle Scholar
  107. 107.
    C. Monroe, D.M. Meekhof, B.E. King et al., Demonstration of a universal quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)Google Scholar
  108. 108.
    D.J. Wineland, M. Barret, J. Britton et al., Quantum information processing with trapped ions. Phil. Trans. R. Soc. (Lond.) A361, 1349–1362 (2003)ADSCrossRefGoogle Scholar
  109. 109.
    T. Spiller, Quantum information processing: cryptography, computation, and teleportation. Proc. IEEE 84, 1719–1746 (1996)CrossRefGoogle Scholar
  110. 110.
    V.V. Schmidt, Introduction in Physics of Superconductors (Science, Moscow, 1982). (in Russian)Google Scholar
  111. 111.
    Yu. Makhlin, G. Schön, A. Shnirman, Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)ADSCrossRefGoogle Scholar
  112. 112.
    J.H. Platenberg, P.C. de Groot, C.J.P.M. Harmands et al., Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nat. (Lond.) 447, 836–839 (2007)Google Scholar
  113. 113.
    P. Benioff, Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1681–1684 (1982)MathSciNetADSCrossRefGoogle Scholar
  114. 114.
    A.M. Steane, Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  115. 115.
    J. Preskill, Reliable quantum computers. Proc. R. Soc. (Lond.) A454, 385–410 (1998)MathSciNetADSCrossRefGoogle Scholar
  116. 116.
    B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)ADSCrossRefGoogle Scholar
  117. 117.
    Lanl/arXiv:quant-ph/0003031Google Scholar
  118. 118.
    B.E. Kane, Silicon-based quantum computation, Fortschr. Phys. 48, 1023–1041 (2000)CrossRefGoogle Scholar
  119. 119.
    A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsining, Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B68, 193207–4 (2003)ADSGoogle Scholar
  120. 120.
    D.K. Wilson, G. Feher, Electron spin resonance on donors in silicon. Phys. Rev. 124, 1068–1083 (1961)ADSCrossRefGoogle Scholar
  121. 121.
    V.G. Plekhanov, Isotopetronics-new direction of nanoscience, Lanl/ArXiv/gen.phys/1007.5386Google Scholar
  122. 122.
    J.S. Waugh, C.P. Slichter, Mechanism of nuclear spin-lattice relaxation in insulators at very low temperatures. Phys. Rev. B37, 4337–4339 (1988)ADSGoogle Scholar
  123. 123.
    B.E. Kane, N.S. McAlpine, A.S. Dzurak, B.G. Clark, Single Spin measurement using single-electron transistors to probe two-electron systems. Phys. Rev. B61, 2961–2972 (2000)ADSGoogle Scholar
  124. 124.
    A.J. Skinner, M.E. Davenport, B.E. Kane, Hydrogenic spin quantum computing in silicon. Phys. Rev. Lett. 90, 087901–4 (2003)ADSCrossRefGoogle Scholar
  125. 125.
    R. Vrijen, E. Yablonovich, K. Wang et al., Electron spin resonance transistors for quantum computing in Silicon–Germanium heterostructures. Phys. Rev. A62, 12306–12309 (2000)ADSGoogle Scholar
  126. 126.
    I. Shlimak, V.I. Safarov, I. Vagner, Isotopically engineered Si/SiGe nanostructures as basic elements for a nuclear spin quantum computer. J. Phys. Condens. Matter 13, 6059–6065 (2001)ADSGoogle Scholar
  127. 127.
    I. Shlimak, I. Vagner, Quantum information processing based on \(^{31}\)P nuclear spin qubits in a quai-one-dimensional \(^{28}\)Si nanowire. Phys. Rev. B75, 045336–6 (2007)ADSGoogle Scholar
  128. 128.
    I. Shlimak, V. Ginodman, A. Butenko et al., Electron transport in a slot-gate Si MOSFET, Lanl/ArXiv: cond-mat./0803.4432Google Scholar
  129. 129.
    F. Schäffler, High-electron-mobility Si/SiGe heterostructures: influence of the relaxed buffer layer. Semicond. Sci. Technol. 7(n 2), 260–267 (1992)Google Scholar
  130. 130.
    V.G. Plekhanov, Elementary excitations in isotope -mixed crystals. Phys. Rep. 410, 1–235 (2005)ADSCrossRefGoogle Scholar
  131. 131.
    V.G. Plekhanov, Manifestation and origin of the isotope effect. Lanl/ArXiv/gen. phys./0907.2024Google Scholar
  132. 132.
    V.G. Plekhanov, Isotopes in quantum information, Preprint N 2 of Computer Science College, Tallinn, 2007. (in Russian)Google Scholar
  133. 133.
    D. Bimberg, M. Grundman, N.N. Ledenzov, Quantum Dot Heterostructure, (Wiley, Chichester, 1999)Google Scholar
  134. 134.
    D.P. DiVincenzo, Two-bit are universal for quantum computation. Phys. Rev. A51, 1015–1022 (1995)ADSGoogle Scholar
  135. 135.
    D.P. DiVincenzo, Quantum computation, Science 270, 256–261 (1995)Google Scholar
  136. 136.
    Special issue of Solid State Communications, Vol. 149,2009Google Scholar
  137. 137.
    A. Olaya-Castro, N.F. Johnson, Quantum information processing in nanostructures, Lanl/Arxiv/quant-ph/0406133Google Scholar
  138. 138.
    D. Gammon, D.G. Steel, Optical studies of single quantum dots, Phys. Today 55,36–41 (2002)Google Scholar
  139. 139.
    P. Michler (ed.), Single Semiconductor Quantum Dots (Springer, Berlin, 2009)Google Scholar
  140. 140.
    S. Kiravittaya, A. Rastelli, O.G. Schmidt, Advanced quantum dot configurations. Rep. Prog. Phys. 72, 046502–046534 (2009)ADSCrossRefGoogle Scholar
  141. 141.
    V.G. Plekhanov, Isotope-based quantum information, Lanl/ArXiv/quant-ph/0909.0820Google Scholar
  142. 142.
    L. Quiroga, N.F. Johnson, Entangled Bell and Greenberg-Horne-Zeilinger state of excitons in coupled quantum dots. Phys. Rev. 83, 2270–2273 (1999)ADSGoogle Scholar
  143. 143.
    A.M. Stoneham, A.J. Fisher, P.T. Greenland, Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys. Condens. Matter 15, L447–L451 (2003)Google Scholar
  144. 144.
    A.M. Stoneham, Theory of Defects in Solids (Oxford University Press, Oxford, 1975)Google Scholar
  145. 145.
    A.M. Steane, Introduction to quantum error correction. Phil Transac. (Lond.) 356, 1739–1758 (1998)MathSciNetADSGoogle Scholar
  146. 146.
    J. Preskill, Fault-tolerant quantum computation, in [22], pp. 213–269Google Scholar
  147. 147.
    A.M. Steane, Quantum error correction, in [22], pp. 184–212Google Scholar
  148. 148.
    J. Kempe, Approach to quantum error correction, Lanl/ArXiv/quant-ph/0612185Google Scholar
  149. 149.
    A. Peres, Reversible logic and quantum computers. Phys. Rev. A32, 3266–3276 (1985)MathSciNetADSGoogle Scholar
  150. 150.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dodrecht, 1993)zbMATHGoogle Scholar
  151. 151.
    W.K. Wooters, W.H. Zurek, A single quantum state cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefGoogle Scholar
  152. 152.
    D. Dieks, Communications by electron-paramagnetic-resonance devices. Phys. Lett. A92, 271–272 (1982)ADSGoogle Scholar
  153. 153.
    P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A52, R2493–R2496 (1995)ADSGoogle Scholar
  154. 154.
    A.R. Calderbrank, P.W. Shor, Good quantum error-correcting codes exist. Phys. Rev. A54, 1098–1105 (1996)ADSGoogle Scholar
  155. 155.
    R.W. Hamming, Coding and Information Theory, 2nd edn. (Prentice Hall, Englewood Cliffs, 1986)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Vladimir G. Plekhanov
    • 1
  1. 1. Mathematics and Physics DepartmentComputer Science CollegeTallinnEstonia

Personalised recommendations