Advertisement

Introduction to Isotope Effect

  • Vladimir G. Plekhanov
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

An atom consists of an extremely small, positively charged nucleus surrounded by a cloud of negatively charged electrons. Although typically the nucleus is less than one ten-thounsandth the size of the atom, the nucleus contains more than 99.9% of the mass of the atom. Atomic nucleus is the small, central part of an atom consisting of A-Nucleons, Z-Protons, and N-Neutrons . The atomic mass of the nucleus, A, is equal to Z + N. A given element can have many different isotopes, which differ from one another by the number of neutrons contained in the nuclei.

Keywords

Mixed Crystal Exciton State Free Exciton Longitudinal Optical Phonon Coherent Potential Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Soddy, Intra-atomic charge. Nature (London) 92, 399–400 (1913)ADSCrossRefGoogle Scholar
  2. 2.
    F. Soddy, The structure of the atom. Nature (London) 92, 452–452 (1913)ADSCrossRefGoogle Scholar
  3. 3.
    H. Frauenfelder, E.M. Henley, Subatomic Physics (Prentice Hall, New York, 1991)Google Scholar
  4. 4.
    J.J. Kelly, Nucleon charge and magnerization densities from Sachs form factors. Phys. Rev. C66, 065203–065206 (2002)ADSGoogle Scholar
  5. 5.
    G.A. Miller, A.K. Opper, E.J. Stephenson, Charge symmetry breaking and QCD, ArXiv: nucl-ex/0602021Google Scholar
  6. 6.
    G.A. Miller, Charge densities of the neutron and proton. Phys. Rev. Lett. 99, 112001–112004 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    G.A. Miller, J. Arringfton, The neutron negative central charge density: an inclusive–exclusive connection, ArXiv: nucl-th/0903.1617Google Scholar
  8. 8.
    P.A.M. Dirac, The Principles of Quantum Mechanivs (Oxford University Press, UK, 1958)Google Scholar
  9. 9.
    R.P. Feyman, R.P. Leighton, M. Sands, The Feyman Lecture in Physics, vol. 3 (Addison - Wesley, Reading, MA, 1965)Google Scholar
  10. 10.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon, New York, 1977)Google Scholar
  11. 11.
    V.G. Plekhanov, Manifestation and origin of the isotope effect, ArXive: gen. phys/0907.2024 (2009) pp. 1–192Google Scholar
  12. 12.
    F.W. Aston, Mass-Spectra and Isotopes (Science, Moscow, 1948). (in Russian)Google Scholar
  13. 13.
    K. Blaum, High accuracy mass spectrometry with stored ions. Phys. Reports 425, 1–783 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    K. Blaum, W. Geithnar, J. Lassen, Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N = 20 and N = 28, Nucl. Phys. 799, 30–45 (2008)Google Scholar
  15. 15.
    M. Glaser, M. Borys, Precision mass measurements. Rep. Prog. Phys. 72, 126101–126131 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Wong, Introductory Nuclear Physics (Wiley, New York, 1998)CrossRefGoogle Scholar
  17. 17.
    Ju.M. Schirokov, N.P. Judin, Nuclear Physics (Science, Moscow, 1980). (in Russian)Google Scholar
  18. 18.
    W.F. Hornyack, Nuclear Structurs (Academic Press, New York, 1975)Google Scholar
  19. 19.
    B.M. Brink, Nuclear Forces (Pergamon, New York, 1965)Google Scholar
  20. 20.
    J. Carlson, R. Schiavilla, Structure and dynamics of few—nucleon systems. Rev. Mod. Phys. 70, 743–841 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    C. Davies, S. Collins, Physics, (World, August, 2000), pp. 35–40Google Scholar
  22. 22.
    V.G. Plekhanov, Isotope effect on the lattice dynamics in crystals. Mater. Sci. Eng. R35, 139–237 (2001)Google Scholar
  23. 23.
    I.M. Lifshitz, Selected Papers Physics of Real Crystals and Disordered Systems (Science, Moscow, 1987). (in Russian)Google Scholar
  24. 24.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Iopatova, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971)Google Scholar
  25. 25.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press, London, 1968)Google Scholar
  26. 26.
    V.G. Plekhanov, Lattice-dynamics of isotope-mixed crystals, ArXiv: cond-mat/1007.5125 (2010)Google Scholar
  27. 27.
    G. Dolling, in Neutron Spectroscopy and Lattice Dynamics, ed. by G.K. Horton, A.A. Maradudin, Dynamical Properties of Solids, vol 1, (North-Holland, Amsterdam, 1974) Chap. 10, pp. 543–629Google Scholar
  28. 28.
    G. Dolling, A.D.B. Woods, Thermal Vibrations Crystal Lattice, in ed. by P.A. Egelstaff, Thermal Neutron Scattering, (Academic Press, New York, 1965), pp. 178–262Google Scholar
  29. 29.
    A.S. Barker Jr, A.J. Sievers, Optical studies of the vibrational properties of disordered solids. Rev. Mod. Phys. 47(Suppl. 2), S1–S179 (1975)CrossRefGoogle Scholar
  30. 30.
    R.J. Elliott, J.A. Krumhansl, P.L. Leath, The theory and properties of randomly disordered crystals and physical systems. Rev. Mod. Phys. 46, 465–542 (1974)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    R.J. Elliott, I.P. Ipatova (eds.), Optical Properties of Mixed Crystals (North - Holland, Amsterdam, 1988)Google Scholar
  32. 32.
    I.P. Ipatova, Universal parametrs in mixed crystals in [30] Chap. 1, pp. 1–34Google Scholar
  33. 33.
    D.W. Taylor, Phonon response theory and the infrared and Raman experiments in [30] Chap. 2, pp. 35–132Google Scholar
  34. 34.
    M. Lax, E. Burstein, Infrared lattice absorption in ionic and homopolar crystals. Phys. Rev. 97, 39–52 (1955)ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    V.F. Agekyan, A.M. Asnin, V.M. Kryukov et al., Isotope effect in germanium, Fiz. Tverd. tela (St. Petersburg) 31, 101–104, (1989). (in Russian)Google Scholar
  36. 36.
    H.D. Fuchs, G.H. Grein, C. Thomsen et al., Comparison of the phonon spectra of \(^{70}\)Ge and \(^{\rm {nat}}\)Ge crystals: effects of isotopic disorder. Phys. Rev. B43, 483–491 (1991)Google Scholar
  37. 37.
    H.D. Fuchs, S.H.Grein, R.I. Devlen, et al., Anharmonic decay time, isotopic scattering time, and inhomogeneous line broadening optical phonons in \(^{70}\)Ge, \(^{76}\)Ge and natural Ge crystals ibid B44, 8633–8642, (1991)Google Scholar
  38. 38.
    P.W. Andersen, Absence of diffusion in certain random lattice. Phys. Rev. 109, 1492–1505 (1955)ADSCrossRefGoogle Scholar
  39. 39.
    P.W. Andersen, Solid state physics 2, 193–243, 1970Google Scholar
  40. 40.
    P. Etchegoin, H.D. Fuchs, J. Weber et al., Phonons in isotopically disordered Ge. Phys. Rev. B48, 12661–12671 (1993)ADSGoogle Scholar
  41. 41.
    J.M. Zhang, M. Giehler, A. Gobel et al., Optical phonons in isotopic Ge studied by Raman scattering. Phys. Rev. B57, 1348–1351 (1998)ADSGoogle Scholar
  42. 42.
    J.M. Zhang, T. Ruf, R. Lauck et al., Raman spectra of isotopic GaN. Phys. Rev. B56, 14399–14404 (1997)ADSGoogle Scholar
  43. 43.
    H. Hanzawa, N. Umemura, Y. Nisida, H. Kanda, Disorder effect of nitrogen impurities, irradiation-induced defects and \(^{13}\)C isotope composition on the Raman spectrum in synthetic I\(^{b}\) diamond, Phys. Rev. B54, 3793–3799 (1996)Google Scholar
  44. 44.
    F. Widulle, T. Ruf, M. Konuma et al., Isotope effects in elemental semiconductors: a Raman study of silico. Solid State Commun. 118, 1–22 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    D.T. Wang, A. Gobel, J. Zepenhagen, et al., Raman scattering on \(\alpha \)-Sn: dependence on isotopic composition, Phys. Rev. B56, 13167–13 171, (1997)Google Scholar
  46. 46.
    F. Widulle, Raman spectroscopy of semiconductors with controlled isotopic composition (Ph. D, Stuttgart, Germany, 2002)Google Scholar
  47. 47.
    V.G. Plekhanov, Isotope effects in lattice dynamics. Physics-Uspekhi 46, 689–715 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    K.C. Hass, M.A. Tamor, T.R. Anthony, W.F. Banholzer, Lattice dynamics and Raman spectra of isotopically mixed diamond. Phys. Rev. B45, 7171–7182 (1992)ADSGoogle Scholar
  49. 49.
    J. Spitzer, P. Etchegoin, T.R. Anthony et al., Isotopic—disorder induced Raman scattering in diamond. Solid State Commun. 88, 509–513 (1983)CrossRefGoogle Scholar
  50. 50.
    R.M. Chrenko, \(^{13}\)C-doped diamond: Raman spectra. Appl. Phys. 63, 5873–5875 (1988)Google Scholar
  51. 51.
    V.G. Plekhanov, Giant Isotope Effect in Solids (Stefan University Press, La Jolla, 2004)CrossRefGoogle Scholar
  52. 52.
    M. Schwoerer-Bohning, D.A. Arms, A.T. Macrander, Phonon dispersion of diamond measured by inelastic X-ray scattering. Phys. Rev. Lett. 80, 5572–5575 (1998)Google Scholar
  53. 53.
    S.A. Solin, A.K. Ramdas, Raman spectrum of diamond. Phys. Rev. B1, 1687–1699 (1970)ADSGoogle Scholar
  54. 54.
    V.G. Plekhanov, Experimental evidence of strong scattering in isotopical disordered systems: the case LiH\(_{x}\)D\(_{1-x}\). Phys. Rev. B51, 8874–8878 (1995)ADSGoogle Scholar
  55. 55.
    V.G. Plekhanov, Experimental evidence of strong scattering in isotopical disordered systems, ArXiv: cond-mat/0907.3817Google Scholar
  56. 56.
    V.G. Plekhanov, Lattice dynamics of isotopically mixed systems, Opt. Spectr. (St. Petersburg) 82, 95–124, 69 (1997)Google Scholar
  57. 57.
    V.G. Plekhanov, Isotopic and disorder effects in large exciton spectroscopy, Uspekhi-Phys. (Moscow) 167, 577–604, (1997). (in Russian)Google Scholar
  58. 58.
    A.F. Kapustinsky, L.M. Shamovsky, K.S. Bayushkina, Thermochemistry of isotopes. Acta physicochem (USSR) 7, 799–810 (1937)Google Scholar
  59. 59.
    A.A. Klochikhin, Renormalization of Wannier–Mott exciton spectrum by Fr chlich interaction. Sov. Phys. Solid State 22, 986–992 (1980)Google Scholar
  60. 60.
    V.G. Plekhanov, Elementary excitations in isotope-mixed crystals. Phys. Reports 410, 1–235 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Onodera, Y. Toyozawa, Persistence and amalgamation types in the electronic structure of mixed crystals. J. Phys. Soc. Japan 24, 341–355 (1968)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  63. 63.
    F.I. Kreingol’d, K.F. Lider, K.I. Solov’ev, Isotope shift of exciton line in absorption spectrum Cu\(_{2}\)O, JETP Letters (Moscow) 23, 679–681, (1976). (in Russian)Google Scholar
  64. 64.
    F.I. Kreingol’d, K.F. Lider, V.F. Sapega, Influence of isotope substitution on the exciton spectrum in Cu\(_{2}\)O crystal, Fiz. Tverd. Tela 19, 3158–3160, (1977). (in Russian)Google Scholar
  65. 65.
    F.I. Kreingol’d, B.S. Kulinkin, Influence of isotope substitution on the forbidden gap of ZnO crystals, ibid 28, 3164–3166, (1986). (in Russian)Google Scholar
  66. 66.
    F.I. Kreingol’d, Dependence of band gap ZnO on zero-point energy, ibid 20, 3138–3140, (1978). (in Russian)Google Scholar
  67. 67.
    F.I. Kreingol’d, K.F. Lider, M.B. Shabaeva, Influence of isotope substitution sulfur on the exciton spectrum in CdS crystal, ibid, 26, 3940–3941, (1984). (in Russian)Google Scholar
  68. 68.
    J.M. Zhang, T. Ruf, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B57, 9716–9722 (1998)ADSGoogle Scholar
  69. 69.
    T.A. Meyer, M.L.W. Thewalt, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B69, 115214–5 (2004)ADSGoogle Scholar
  70. 70.
    D. Karaskaja, M.L.W. Thewalt, T. Ruf, Photoluminescence studies of isotopically - enriched silicon: Isotopic effects on indirect electronic band gap and phonon energies. Solid State Commun. 123, 87–92 (2003)CrossRefGoogle Scholar
  71. 71.
    D. Karaskaja, M.L.W. Thewalt, T. Ruf, Phys. Stat. Sol. (b) 235, 64–69 (2003)ADSGoogle Scholar
  72. 72.
    S. Tsoi, H. Alawadhi, X. Lu et al., Electron - phonon renormalization of electronic bandgaps of semiconductors: Isotopically enriched silicon. Phys. Rev. B70, 193201–193204 (2004)ADSGoogle Scholar
  73. 73.
    A.K. Ramdas, S. Rodriguez, S. Tsoi et al., Electronic band gaps of semiconductors as influenced by their isotopic composition. Solid State Commun. 133, 709–714 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    S. Tsoi, S. Rodriguez, A.K. Ramdas et al., Isotopic dependence of the E\(_{0}\) and E\(_{1}\) direct gaps in the electronic band structure of Si. Phys. Rev. B72, 153203–4 (2005)ADSGoogle Scholar
  75. 75.
    H. Kim, S. Rodriguez, T.R. Anthony, Electronic transitions of holes bound to boron acceptors in isotopically controlled diamond. Solid State Commun. 102, 861–865 (1997)ADSCrossRefGoogle Scholar
  76. 76.
    A.A. Klochikhin, V.G. Plekhanov, Isotope effect on the Wannier–Mott exciton levels. Sov. Phys. Solid State 22, 342–344 (1980)Google Scholar
  77. 77.
    V.G. Plekhanov, Direct observation of the effect of isotope-induced-disorder on the exciton binding energy in LiH\(_{x}\)D\(_{1-x}\) mixed crystals. J. Phys. Condens. Matter 19, 086221–9 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    V.G. Plekhanov, Isotopetronics-new direction of nanoscience, ArXiv: gen. phys/1007.5386Google Scholar
  79. 79.
    A. Cho (ed.), Molecular Beam Epitaxy (Springer, Berlin, 1997)Google Scholar
  80. 80.
    G.B. Stringfellow, Organometallic Vapor—Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, London, 1999)Google Scholar
  81. 81.
    M.J. Kelly, Low-Dimensional Semiconductors (Clarendon Press, Oxford, 1995)Google Scholar
  82. 82.
    J.H. Davis, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)Google Scholar
  83. 83.
    K. Goser, P. Glsektter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)Google Scholar
  84. 84.
    A.A. Berezin, Isotope superlattices and isotopically ordered structures. Solid State Commun. 65, 819–821 (1988)ADSCrossRefGoogle Scholar
  85. 85.
    E.E. Haller, Isotope heterostructures selectively doped by neutron transmutation. Semicond. Sci.& technol. 5, 319–321 (1990)ADSCrossRefGoogle Scholar
  86. 86.
    M. Cardona, P. Etchegoin, H.D. Fuchs et al., Effect of isotopic disorder and mass on the electronic and vibronic properties of three-, two- and one- dimensional solids. J. Phys. Condens Matter 5, A61–A72 (1993)ADSCrossRefGoogle Scholar
  87. 87.
    J. Spitzer, T. Ruf, W. Dondl et al., Raman scattering by optical phonons in isotopic \(^{70}\)(Ge)\(_{n}^{74}\)(Ge)\(_{n}\) superlattices. Phys. Rev. Lett. 72, 1565–1568 (1994)ADSCrossRefGoogle Scholar
  88. 88.
    E. Silveira, W. Dondl, G. Abstreiter et al., Ge self - diffusion in isotopic \(^{70}\)(Ge)\(_{n}^{74}\)(Ge)\(_{m}\) superlattices: A Raman study. Phys. Rev. B56, 2062–2069 (1997)ADSGoogle Scholar
  89. 89.
    M. Nakajima, H. Harima, K. Morita, et al., Coherent confined LO phonons in \(^{70}\)Ge/\(^{74}\)Ge isotope superlattices generated by ultrafast laser pulses, Phys. Rev. B63, 161304(R)(1–4) (2001)Google Scholar
  90. 90.
    V.G. Plekhanov, Applications of isotope effects in solids. J. Mater. Science 38, 3341–3429 (2003)CrossRefGoogle Scholar
  91. 91.
    A.V. Kolobov, K. Morita, K.M. Itoh et al., A Raman scattering study of self-assembled pure isotope Ge/Si (100) quantum dots. Appl. Phys. Lett. 81, 3855–3857 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    T. Kojima, R. Nebashi, Y. Shiraki et al., Growth and characterization of \(^{28}\)Si/\(^{30}\)Si isotope superlattices. Appl. Phys. Lett. 83, 2318–2320 (2003)ADSCrossRefGoogle Scholar
  93. 93.
    L.M. Zhuravleva, V.G. Plekhanov, Nuclear technology in creation of low-dimensional isotope-mixed structures. Nanoind. 4, 28–30, (2009). (in Russian)Google Scholar
  94. 94.
  95. 95.
    L. M. Zhuravleva, V. G. Plekhanov, Isotopetronics and quantum information, Nano microsyst. N3, 46–54, (2011). (in Russian)Google Scholar
  96. 96.
    M. Cardona, M.L.W. Thewalt, Isotope effect on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)ADSCrossRefGoogle Scholar
  97. 97.
    M.A. Herman, W. Richter, H.Sitter, Epitaxy, Physical Principles and Technical Implementation, in Springer Series in Materials Science, vol. 62 (Springer, Heidelberg, 2004)Google Scholar
  98. 98.
    V.G.Plekhanov, Isotope-Mixed Crystals: Fundamentals and Applications (2011, in press)Google Scholar
  99. 99.
    G. Fasol, M. Tanaka, H. Sakaki et al., Interface roughness and dispersion of confined LO phonons in GaAs/AlAs quantum wells. Phys. Rev. B38, 6056–6065 (1988)ADSGoogle Scholar
  100. 100.
    H. Bilz, W. Kress, Phonon Dispersion Relations in Insulators (Springer, Berlin, 1979)CrossRefGoogle Scholar
  101. 101.
    P. Michler (ed.), Single Semiconductor Quantum Dots (Springer, Berlin, 2009)Google Scholar
  102. 102.
    K. Barnham, D. Vvedensky, Low-Dimensional Semiconductor Structures (Cambridge University Press, Cambridge, 2009)Google Scholar
  103. 103.
    P. Harrison, Quantum Wells, Wires, and Dots (Wiley, New York, 2001)Google Scholar
  104. 104.
    S.A. Moskalenko, Towards to theory of Mott excitons in alkali halides crystals, Opt. Spectr. 5, 147–155, (1958) (in Russian)Google Scholar
  105. 105.
    M.A. Lampert, Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958)ADSCrossRefGoogle Scholar
  106. 106.
    V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Progr. Mat. Science 51, 287–426 (2006)CrossRefGoogle Scholar
  107. 107.
    B. Hnerlage, R. Levy, J.B. Grun et al., The dispersion of excitons, polaritons and biexcitons in direct-gap semiconductors. Phys. Reports 124, 163–253 (1985)ADSGoogle Scholar
  108. 108.
    R.C. Miller, D.A. Kleinman, W.T. Tsang, Observation of the excited level of excitons in GaAs quantum wells. Phys. Rev. B24, 1134–1136 (1981)ADSGoogle Scholar
  109. 109.
    R.C. Miller, D.A. Kleinman, W.T. Tsang, Observation of the excited level of excitons in GaAs quantum wells, ibid B25, 6545–6549, (1982)Google Scholar
  110. 110.
    D. Birkedal, J. Singh, V.G. Lyssenko et al., Binding of quasi two-dimensional biexcitons. Phys. Rev. Lett. 76, 672–675 (1996)ADSCrossRefGoogle Scholar
  111. 111.
    G. Bacher, T. Kmmel, Optical properties of epitaxially grown wide bandgap single quantum dots, in [101] pp. 71–121Google Scholar
  112. 112.
    V.G. Plekhanov, Isotope—based quantum information, ArXiv:quant-ph/0909.0820 (2009)Google Scholar
  113. 113.
    G. Chen, T.H. Stievater, E.T. Batteh et al., Biexciton quantum coherence in a single quantum dot. Phys. Rev. Lett. 88, 117901–117904 (2002)ADSCrossRefGoogle Scholar
  114. 114.
    Special issue on high excitation and short pulse phenomena, J. Luminesc. 30, N1–4 (1985)Google Scholar
  115. 115.
    K. Herz, T. Kmmel, G. Bacher et al., Biexcitons in low-dimensional CdZnSe/ZnSe structures. Phys. Stat. Solidi (a) 164, 205–208 (1997)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Vladimir G. Plekhanov
    • 1
  1. 1. Mathematics and Physics DepartmentComputer Science CollegeTallinnEstonia

Personalised recommendations