Advertisement

Mie Theory: A Review

  • Thomas Wriedt
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 169)

Abstract

In optical particle characterisation and aerosol science today light scattering simulations are regarded as an indispensable tool to develop new particle characterisation techniques or in solving inverse light scattering problems. Mie scattering and related computational methods have evolved rapidly during the past decade such that scattering computations for spherical scatterers a few order of magnitudes larger, than the incident wavelength can be easily performed. This significant progress has resulted from rapid advances in computational algorithms developed in this field and from improved computer hardware. In this chapter the history and a review of the recent progress of Mie scattering and Mie-related light scattering theories and available computational programs is presented. We will focus on Mie scattering theories but as there is much overlap to related scattering theories they will also be mentioned where appropriate. Short outlines of the various methods are given. This review is of course biased by my interest in optical particle characterisation and my daily reading.

Keywords

Chiral Medium Nonspherical Particle Dielectric Sphere Magnetic Sphere Spherical Scatterer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I acknowledge the support of this work by Deutsche Forschungsgemeinschaft (DFG). I like to thank Jannis Saalfeld and Vincent Loke for lauguage editing.

References

  1. 1.
    M.I. Mishchenko, L.D. Travis, Bull. Am. Meteorol. Soc. 89(12), 1853 (2008)ADSGoogle Scholar
  2. 2.
    M.I. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1210 (2009)ADSGoogle Scholar
  3. 3.
    U. Kreibig, Physik in unserer Zeit 39(6), 281 (2008)ADSGoogle Scholar
  4. 4.
    W. Hergert, T. Wriedt (eds.), Mie Theory 1908–2008 (Universität Bremen, Bremen, 2008)Google Scholar
  5. 5.
    T. Stübinger, U. Köhler, W. Witt, U. Köhler, W. Witt, in Particulate Systems Analysis 2008 (Stratford-upon-Avon, UK, 2008)Google Scholar
  6. 6.
    T. Wriedt, in Mie Theory 1908–2008, ed. by W. Hergert, T. Wriedt (Universität Bremen. Bremen, 2008), pp. 17–21Google Scholar
  7. 7.
    H. Horvath, J. Quant. Spectrosc. Radiat. Transf. 110(11), 783 (2009)ADSGoogle Scholar
  8. 8.
    H. Horvath, J. Quant. Spectrosc. Radiat. Transf. 110(11), 787 (2009)ADSGoogle Scholar
  9. 9.
    V. Garbin, G. Volpe, E. Ferrari, M. Versluis, D. Cojoc, D. Petrov, New J. Phys. 11(1), 013046 (2009)ADSGoogle Scholar
  10. 10.
    M. Kolwas, Comput. Methods Sci. Technol. 16 Special Issue (2), 108 (2010)Google Scholar
  11. 11.
    T. Wriedt, Part.& Part. Syst. Charact. 15(2), 67 (1998)Google Scholar
  12. 12.
    F.M. Kahnert, J. Quant. Spectrosc. Radiat. Transf. 79–80, 775 (2003)Google Scholar
  13. 13.
    G. Veronis, S. Fan, in Surface Plasmon Nanophotonics (Springer, Dortrecht, 2007), pp. 169–182Google Scholar
  14. 14.
    G.A. Niklasson, W.E. Vargas, Encyclopedia of Surface and Colloid Science, 2nd edn. pp. 3346–3358 (2006)Google Scholar
  15. 15.
    J. Zhao, A.O. Pinchuk, J.M. McMahon, S. Li, L.K. Ausman, A.L. Atkinson, G.C. Schatz, Acc. Chem. Res. 41(12), 1710 (2008)Google Scholar
  16. 16.
    C.J. Bouwkamp, Rep. Prog. Phys. 17(1), 35 (1954)MathSciNetADSGoogle Scholar
  17. 17.
    V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J. F. Javier García de Abajo, Chem. Soc. Rev. (2008)Google Scholar
  18. 18.
    V. Veselago, L. Braginsky, V. Shklover, C. Hafner, J. Comput. Theor. Nanosci. 3, 189 (2006)Google Scholar
  19. 19.
    G. Mie, Annalen der Physik 330(3), 377 (1908)ADSGoogle Scholar
  20. 20.
    R. Gans, Annalen der Physik 381(1), 29 (1925)ADSGoogle Scholar
  21. 21.
    H. Blumer, Zeitschrift für Physik 32, 119 (1925)ADSGoogle Scholar
  22. 22.
    N.A. Logan, Proc. IEEE pp. 773–785 (1965)Google Scholar
  23. 23.
    A. Clebsch, Journal für Mathematik, Band 61, Heft 3, 195 (1863)Google Scholar
  24. 24.
    L. Lorenz, Det Kongelige Danske Videnskabernes Selskabs Skrifter 6. Raekke, 6. Bind 1, 1 (1890)Google Scholar
  25. 25.
    L. Lorenz, Oeuvres scientifiques de L. Lorenz. Revues et annotées par H. Valentiner (Libraire Lehmann& Stage, Copenhague, 1898), chap. Sur la lumière réfléchie et réfractée par une sphère (surface) transparente., pp. 403–529Google Scholar
  26. 26.
    P. Debye, Annalen der Physik, Vierte Folge, Band 30. No. 1, 57 (1909)Google Scholar
  27. 27.
    W.T. Grandy, Scattering of waves from large spheres (Cambridge Univ. Press, Cambridge, 2000)Google Scholar
  28. 28.
    E. Davis, G. Schweiger, The Airborne Microparticle (Springer, Berlin, Heidelberg, 2002)Google Scholar
  29. 29.
    G. Burlak, The Classical and Quantum Dynamics of the Multispherical Nanostructures (Imperial College Press, London, 2004)Google Scholar
  30. 30.
    M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation: and other electromagnetic radiation (Academic Press, New York, London, 1969)Google Scholar
  31. 31.
    P. Pesic, Sky in a bottle (MIT Press, Cambridge, 2005)Google Scholar
  32. 32.
    O. Keller, Prog. Opt. 43, 257 (2002)Google Scholar
  33. 33.
    H. Kragh, Appl. Opt. 30(33), 4688 (1991)ADSGoogle Scholar
  34. 34.
    M. Cardona, W. Marx, Physik Journal 11, 27 (2004)Google Scholar
  35. 35.
    W. Marx, Phys. Unserer Zeit, pp. 34–39 (2007)Google Scholar
  36. 36.
    B.F. Bowman, www.biochem.mpg.de/iv/AgFN_Bibliometrie.pdf. accessed 15. Aug. 2008. (2008)
  37. 37.
    I. Fränz-Gotthold, M. von Laue, Annalen der Physik 425(3), 249 (1938)ADSGoogle Scholar
  38. 38.
  39. 39.
    G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions. Tech. Rep. Library Translation 1873, RAE-Lit-Trans-1873, Royal Aircraft Establishment (1976). http://diogenes.iwt.uni-bremen.de/vt/laser/papers/RAE-LT1873-1976-Mie-1908-translation.pdf
  40. 40.
    G. Mie, Contributions on the optics of turbid media, particularly colloidal metal solutions – Translation. Technical report. SAND78-6018. National Translation Center, Chicago, ILL, Translation 79–21946, Sandia Laboratories, Albuquerque, New Mexico (1978)Google Scholar
  41. 41.
    G. Mie, Consideraciones sobre la óptica de los medios turbios, especialmente soluciones coloidales. Traducción: Arturo Quirantes Sierra. Technical report http://www.ugr.es/aquiran/ciencia/mie/mie1908_spanish.pdf, Universidad de Granada (2007)
  42. 42.
  43. 43.
    J.A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941)zbMATHGoogle Scholar
  44. 44.
    W.W. Hansen, Phys. Rev. 47, 139 (1935)ADSGoogle Scholar
  45. 45.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, 1999)Google Scholar
  46. 46.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)Google Scholar
  47. 47.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Berlin, 1983)Google Scholar
  48. 48.
    E.C.L. Ru, P.G. Etchegoin, Prinziples of surface-enhanced Raman spectroscopy and related plasmonic effects (Elsevier, Amsterdam, 2009)Google Scholar
  49. 49.
    S.V. (ed.), Thermal Nanosystems and Nanomaterials (Springer, Heidelberg, 2009) Mie Theory and the Discrete Dipole Approximation, Franck Enguehard, 2009Google Scholar
  50. 50.
    R.H. Giese, Elektron. Rechenanl. 3, 240 (1961)zbMATHGoogle Scholar
  51. 51.
    J. Dave, Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere, Rep. No. 320–3237. Technical report, IBM Scientific Center, Palo Alto, Calif. (1968)Google Scholar
  52. 52.
    C.D. Cantrell, Numerical methods for the accurate calculation of spherical Bessel functions and the location of Mie resonances. Tech. Rep. http://www.utdallas.edu/cantrell/ee6481/lectures/bessres1.pdf, Center for Applied Optics, University of Texas at Dallas, Richardson, TX, USA (1988). http://www.utdallas.edu/cantrell/ee6481/lectures/bessres1.pdf
  53. 53.
    D. Deirmendjann, The Electromagnetic Scattering on Spherical Polydispersion (Elsevier, New York, 1969)Google Scholar
  54. 54.
    D. Deirmendjann, R. Clasen, W. Viezee, J. Opt. Soc. Am. 51(6), 620 (1961)ADSGoogle Scholar
  55. 55.
    H.J. Metz, H.K. Dettmar, Kolloid-Zeitschrift und Zeitschrift für Polymere 192(1–2), 107 (1963)Google Scholar
  56. 56.
    B. Maguire, J. Aerosol Sci. 2(4), 417 (1971)Google Scholar
  57. 57.
    W. Wiscombe, Mie scattering calculations: Advances in technique and fast, vector-speed computer codes. Technical report, Technical Note NCAR/TN-140+STR, National Center for, Atmospheric Research (1979)Google Scholar
  58. 58.
    W.J. Wiscombe, Appl. Opt. 19(9), 1505 (1980)ADSGoogle Scholar
  59. 59.
    W.J. Lentz, Appl. Opt. 15(3), 668 (1976)ADSGoogle Scholar
  60. 60.
    G. Grehan, G. Gouesbet, Appl. Opt. 18(20), 3489 (1979)ADSGoogle Scholar
  61. 61.
    A.R. Jones, J. Phys. D: Appl. Phys. 16(3), L49 (1983)ADSGoogle Scholar
  62. 62.
    G.G. Siu, L. Cheng, J. Opt. Soc. Am. B 19(8), 1922 (2002)ADSGoogle Scholar
  63. 63.
    H. Du, Appl. Opt. 43(9), 1951 (2004)ADSGoogle Scholar
  64. 64.
    J. Shen, PIERS Online 1, 691 (2005)Google Scholar
  65. 65.
    A. Gogoi, A. Choudhury, G. Ahmed, J. Mod. Opt. 57, 2192 (2010)ADSzbMATHGoogle Scholar
  66. 66.
    W.C. Mundy, J.A. Roux, A.M. Smith, J. Opt. Soc. Am. 64(12), 1593 (1974)ADSGoogle Scholar
  67. 67.
    C.F. Bohren, D.P. Gilra, J. Colloid Interface Sci. 72(2), 215 (1979)Google Scholar
  68. 68.
    M. Quinten, J. Rostalski, Part.& Parti. Syst. Charact. 13(2), 89 (1996)Google Scholar
  69. 69.
    I.W. Sudiarta, P. Chylek, J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 709 (2001)ADSGoogle Scholar
  70. 70.
    J.R. Frisvad, N.J. Christensen, H.W. Jensen, ACM Trans. Graph. 26 (2007)Google Scholar
  71. 71.
    W. Sun, N.G. Loeb, Q. Fu, J. Quant. Spectrosc. Radiat. Transf. 83(3–4), 483 (2004)ADSGoogle Scholar
  72. 72.
    A.L. Aden, M. Kerker, J. Appl. Phys. 22(10), 1242 (1951)MathSciNetADSzbMATHGoogle Scholar
  73. 73.
  74. 74.
    O.B. Toon, T.P. Ackerman, Appl. Opt. 20(20), 3657 (1981)ADSGoogle Scholar
  75. 75.
    T. Kaiser, G. Schweiger, Comput. Phys. 7(6), 682 (1993)ADSGoogle Scholar
  76. 76.
    L. Kai, P. Massoli, Appl. Opt. 33(3), 501 (1994)ADSGoogle Scholar
  77. 77.
    Z.S. Wu, L.X. Guo, K.F. Ren, G. Gouesbet, G. Gréhan, Appl. Opt. 36(21), 5188 (1997)ADSGoogle Scholar
  78. 78.
    L. Liu, H. Wang, B. Yu, Y. Xua, J. Shen, China Part. 5, 230 (2007)Google Scholar
  79. 79.
    R.J. Martin, J. Mod. Opt. 40(12), 2467 (1993)ADSGoogle Scholar
  80. 80.
    R. Martin, J. Mod. Opt. 42(1), 157 (1995)ADSGoogle Scholar
  81. 81.
    M. Kerker, C.L. Giles, D.S.Y. Wang, J. Opt. Soc. Am. 72, 1826 (1982)ADSGoogle Scholar
  82. 82.
    M. Kerker, D.S. Wang, C.L. Giles, J. Opt. Soc. Am. 73(6), 765 (1983)ADSGoogle Scholar
  83. 83.
    M.E. Milham, Electromagnetic scattering by magnetic spheres: theory and algorithms. Technical report ERDEC-TR-207, ADA289798, Edgewood Research Development and Engineering Center (1994)Google Scholar
  84. 84.
    R.J. Tarento, K.H. Bennemann, P. Joyes, J. Van de Walle, Phys. Rev. E 69(2), 026606 (2004)ADSGoogle Scholar
  85. 85.
    C. Mätzler, Matlab functions for mie scattering and absorption. Technical report, Research Report No. 2002–08, Institute of Applied Physics, University of Bern (2002)Google Scholar
  86. 86.
    A. Lakhtakia, V.K. Varadan, V.V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer, Berlin, 1989)Google Scholar
  87. 87.
    W.S. Weiglhofer, A (Introduction to complex mediums for optics and electromagnetics (SPIE Press, Lakhtakia, 2003)Google Scholar
  88. 88.
    C.F. Bohren, Chem. Phys. Lett. 29, 458 (1974)ADSGoogle Scholar
  89. 89.
    C.F. Bohren, J. Chem. Phys. 62(4), 1566 (1975)ADSGoogle Scholar
  90. 90.
    C.F. Bohren, Light scattering by optically active particles (University of Arizona, Tucson 1975)Google Scholar
  91. 91.
    M. Hinders, B. Rhodes, Il Nuovo Cimento D 14, 575 (1992). 10.1007/BF02462344Google Scholar
  92. 92.
    B. Stout, M. Neviére, E. Popov, J. Opt. Soc. Am. A 23(5), 1111 (2006)ADSGoogle Scholar
  93. 93.
    Y.L. Geng, X.B. Wu, L.W. Li, B.R. Guan, Phys. Rev. E 70(5), 056609 (2004)ADSGoogle Scholar
  94. 94.
    C.W. Qiu, B. Luk’yanchuk, J. Opt. Soc. Am. A 25(7), 1623 (2008)ADSGoogle Scholar
  95. 95.
    E. Kennaugh, Proc. Inst. Radio Eng. 49, 380 (1961)Google Scholar
  96. 96.
    A. Itoh, T. Hosono, IEICE Trans. Electron. E 75C(1), 107 (1992)Google Scholar
  97. 97.
    A. Itoh, T. Hosono, Electron. Commun. Japan (Part II: Electronics) 78(11), 10 (1995)Google Scholar
  98. 98.
    H. Bech, A. Leder, Optik—International Journal for Light and Electron Optics 117(1), 40 (2006)Google Scholar
  99. 99.
    H.E. Albrecht, H. Bech, N. Damaschke, M. Feleke, Optik 100, 118 (1995)Google Scholar
  100. 100.
    U. Kreibig, M. Vollmer, Opt. properties met. clust. (Springer, Berlin, 1995)Google Scholar
  101. 101.
    U. Kreibig, Appl. Phys. B: Lasers Opt. 93(1), 79 (2008)ADSGoogle Scholar
  102. 102.
    M. Quinten, Optical Properties of Nanoparticle Systems, Mie and Beyond (Wiley-VCH, Berlin, 2011)Google Scholar
  103. 103.
    F. Möglich, Annalen der Physik 409(8), 825 (1933)ADSGoogle Scholar
  104. 104.
    T. Evers, H. Dahl, T. Wriedt, Electron. Lett. 32(15), 1356 (1996)Google Scholar
  105. 105.
    A. Doicu, T. Wriedt, Opt. Commun. 136(1–2), 114 (1997)ADSGoogle Scholar
  106. 106.
    G. Gouesbet, G (Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag Berlin Heidelberg, 2011)Google Scholar
  107. 107.
    A. Doicu, T. Wriedt, Y. Eremin, Light Scattering by Systems of Particles, Null-Field Method with Discrete Sources: Theory and Programs, vol. 124 (Springer, Berlin; New York, 2006)zbMATHGoogle Scholar
  108. 108.
    J.A. Lock, Appl. Opt. 34(3), 559 (1995)ADSGoogle Scholar
  109. 109.
    G. Gouesbet, G. Grehan, J. Opt. Pure Appl. Opt. 1(6), 706 (1999)ADSGoogle Scholar
  110. 110.
    L. Mees, G. Gouesbet, G. Grehan, Opt. Commun. 282(21), 4189 (2009)ADSGoogle Scholar
  111. 111.
    J.J. Wang, G. Gouesbet, Y.P. Han, G. Grehan, J. Opt. Soc. Am. Opt. Image Sci. Vis. 28(1), 24 (2011)ADSGoogle Scholar
  112. 112.
    L. Mees, G. Gouesbet, G. Grehan, Appl. Opt. 40(15), 2546 (2001)ADSGoogle Scholar
  113. 113.
    L.W. Davis, Phys. Rev. A 19(3), 1177 (1979)ADSGoogle Scholar
  114. 114.
    G. Gouesbet, G. Grehan, B. Maheu, K.F. Ren, Electromagnetic scattering of shaped beams (Generalized Lorenz-Mie Theory). Technical report, LESP, CORIA, INSA de Rouen (1998). http://ren.perso.neuf.fr/ThesisHDRBooks/Livre_glmt.pdf
  115. 115.
    N.J. Moore, M.A. Alonso, Opt. Express 16(8), 5926 (2008)ADSGoogle Scholar
  116. 116.
    P.W. Barber, S.C. Hill, Light scattering by particles: Computational methods (World Scientific Publishing, Singapore, 1990)Google Scholar
  117. 117.
  118. 118.
    M. Ringler, Plasmonische Nahfeldresonatoren aus zwei biokonjugierten Goldnanopartikeln. (2008)Google Scholar
  119. 119.
    G. Pellegrini, Modeling the optical properties of nanocluster-based functional plasmonic materials. Ph.D. thesis, Tesi di dottorato, Università degli Studi di Padova, Padova (2008)Google Scholar
  120. 120.
    L. Boyde, K.J. Chalut, J. Guck, Phys. Rev. E 83(2), 026701 (2011)ADSGoogle Scholar
  121. 121.
    S. Lecler, Etude de la diffusion de la lumière par des particules sub-microniques. Ph.D. thesis, Thèse. l’Université Louis Pasteur, Strasbourg (2005)Google Scholar
  122. 122.
    R. Ruppin, Phys. Rev. B 11, 2871 (1975)ADSGoogle Scholar
  123. 123.
    F. Borghese, P. Denti, R. Saija, Scattering from model nonspherical particles: theory and applications to environmental physics (Springer- Berlin, New York, 2007)Google Scholar
  124. 124.
    K. Travis, J. Guck, Biophys. Rev. Lett. 2, 179 (2006)Google Scholar
  125. 125.
    Y. Okada, in Light Scattering Reviews, ed. by A.A. Kokhanovsky, 5th edn. Springer Praxis Books (Springer Berlin, New York, 2010) pp. 3–35Google Scholar
  126. 126.
    W. Trinks, Annalen der Physik 414(6), 561 (1935)ADSGoogle Scholar
  127. 127.
    S. Levine, G.O. Olaofe, J. Colloid Interface Sci. 27(3), 442 (1968)Google Scholar
  128. 128.
    J. Bruning, Y. Lo, IEEE Trans. Antennas Propag. 19(3), 378 (1971)ADSGoogle Scholar
  129. 129.
    J. Bruning, Y. Lo, IEEE Trans. Antennas Propag. 19(3), 391 (1971)ADSGoogle Scholar
  130. 130.
    K.A. Fuller, G.W. Kattawar, R.T. Wang, Appl. Opt. 25(15), 2521 (1986)ADSGoogle Scholar
  131. 131.
    K.A. Fuller, G.W. Kattawar, Opt. Lett. 13(2), 90 (1988)ADSGoogle Scholar
  132. 132.
    K.A. Fuller, G.W. Kattawar, Opt. Lett. 13(12), 1063 (1988)ADSGoogle Scholar
  133. 133.
    D.W. Mackowski, J. Opt. Soc. Am. A 11(11), 2851 (1994)ADSGoogle Scholar
  134. 134.
    D.W. Mackowski, M.I. Mishchenko, J. Opt. Soc. Am. A 13(11), 2266 (1996)ADSGoogle Scholar
  135. 135.
    Y. lin Xu, Appl. Opt. 34(21), 4573 (1995)Google Scholar
  136. 136.
    Y.l. Xu, Appl. Opt. 36(36), 9496 (1997)Google Scholar
  137. 137.
    L. Liu, M.I. Mishchenko, W.P. Arnott, J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656 (2008)ADSGoogle Scholar
  138. 138.
    Y.l. Xu, J. Quant. Spectrosc. Radiat. Transf. 89(1–4), 385 (2004)Google Scholar
  139. 139.
    V. Schmidt, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1392 (2009)ADSGoogle Scholar
  140. 140.
    D. Mackowski, M. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 112, 2182 (2011)ADSGoogle Scholar
  141. 141.
    M. Tagviashvili, Phys. Rev. A 81, 045802 (2010)ADSGoogle Scholar
  142. 142.
    A.D. Ward, M. Zhang, O. Hunt, Opt. Express 16(21), 16390 (2008)ADSGoogle Scholar
  143. 143.
    T. Grosges, A. Vial, D. Barchiesi, Opt. Express 13(21), 8483 (2005)ADSGoogle Scholar
  144. 144.
    R.J. Zhu, J. Wang, G.F. Jin, Optik—Int. J. Light Electr. Opt. 116(9), 419 (2005)Google Scholar
  145. 145.
    C.G. Khoury, S.J. Norton, T. Vo-Dinh, Nanotechnology 21(31), 315203 (2010)ADSGoogle Scholar
  146. 146.
    Y. Takano, K.N. Liou, Appl. Opt. 49(20), 3990 (2010)ADSGoogle Scholar
  147. 147.
    A. Doicu, R. Schuh, T. Wriedt, in Light Scattering Reviews, 3 edn. by A.A. Kokhanovsky (Springer-Berlin, Germany, 2008), pp. 109–130Google Scholar
  148. 148.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006)Google Scholar
  149. 149.
  150. 150.
    J. Hellmers, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1511 (2009)ADSGoogle Scholar
  151. 151.
  152. 152.
    T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 109(8), 1543 (2008)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für WerkstofftechnikBremenGermany

Personalised recommendations