Effective Characterizations of Simple Fragments of Temporal Logic Using Prophetic Automata
Conference paper
Abstract
We present a framework for obtaining effective characterizations of simple fragments of future temporal logic (LTL) with the natural numbers as time domain. The framework is based on prophetic automata (also known as complete unambiguous Büchi automata), which enjoy strong structural properties, in particular, they separate the “finitary fraction” of a regular language of infinite words from its “infinitary fraction” in a natural fashion. Within our framework, we provide characterizations of all natural fragments of temporal logic, where, in some cases, no effective characterization had been known previously, and give lower and upper bounds for their computational complexity.
Keywords
Temporal Logic Regular Language Linear Temporal Logic Negation Normal Form Left Congruence
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Discrete Math. 4(3), 243–271 (1973)MathSciNetMATHCrossRefGoogle Scholar
- 2.Carton, O., Michel, M.: Unambiguous Büchi Automata. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 407–416. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 3.Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297, 37–81 (2003)MathSciNetMATHCrossRefGoogle Scholar
- 4.Cohen, J., Perrin, D., Pin, J.-É.: On the expressive power of temporal logic. J. Comput. System Sci. 46(3), 271–294 (1993)MathSciNetMATHCrossRefGoogle Scholar
- 5.Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. Theory Comput. Syst. 48(3), 486–516 (2011)MathSciNetMATHCrossRefGoogle Scholar
- 6.Allen Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)Google Scholar
- 7.Etessami, K., Wilke, T.: An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic. Inf. Comput. 160(1-2), 88–108 (2000)MathSciNetMATHCrossRefGoogle Scholar
- 8.Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal logic: Mathematical Foundations and Computational Aspects, vol. 1. Clarendon Press, New York (1994)MATHGoogle Scholar
- 9.Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) Protocol Specification, Testing and Verification. IFIP Conference Proceedings, vol. 38, pp. 3–18. Chapman & Hall (1995)Google Scholar
- 10.Kamp, H.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (1968)Google Scholar
- 11.Kim, S.M., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the local testability problem of deterministic finite automata. IEEE Trans. Comput. 40, 1087–1093 (1991)MathSciNetCrossRefGoogle Scholar
- 12.Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant LTL. Inform. Process. Lett. 75(6), 261–263 (2000)MathSciNetCrossRefGoogle Scholar
- 13.McNaughton, R., Papert, S.A.: Counter-free automata. MIT Press, Boston (1971)MATHGoogle Scholar
- 14.Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next-time operator. Inform. Process. Lett. 63(5), 243–246 (1997)MathSciNetCrossRefGoogle Scholar
- 15.Peled, D., Wilke, T., Wolper, P.: An algorithmic approach for checking closure properties of temporal logic specifications and ω-regular languages. Theor. Comput. Sci. 195(2), 183–203 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 16.Perrin, D.: Recent Results on Automata and Infinite Words. In: Chytil, M., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer, Heidelberg (1984)Google Scholar
- 17.Perrin, D., Pin, J.-É.: Infinite Words: Automata, Semigroups, Logic and Games. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)MATHGoogle Scholar
- 18.Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
- 19.Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform. and Control 8(2), 190–194 (1965)MATHCrossRefGoogle Scholar
- 20.Prasad Sistla, A., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32, 733–749 (1985)CrossRefGoogle Scholar
- 21.Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inform. and Comput. 115(1), 1–37 (1994)MathSciNetMATHCrossRefGoogle Scholar
- 22.Wilke, T.: Classifying discrete temporal properties. Post-doctoral thesis, Christian-Albrechts-Universität zu Kiel (1998)Google Scholar
- 23.Wolfgang, T.: Star-free regular sets of ω-sequences. Inform. and Control 42(2), 148–156 (1979)MathSciNetMATHCrossRefGoogle Scholar
- 24.Wolper, P., Vardi, M.Y., Prasad Sistla, A.: Reasoning about infinite computation paths (extended abstract). In: FOCS, pp. 185–194. IEEE (1983)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012