Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Foundations of Software Science and Computational Structures

FoSSaCS 2012: Foundations of Software Science and Computational Structures pp 119–134Cite as

  1. Home
  2. Foundations of Software Science and Computational Structures
  3. Conference paper
Applicative Bisimulations for Delimited-Control Operators

Applicative Bisimulations for Delimited-Control Operators

  • Dariusz Biernacki17 &
  • Sergueï Lenglet17 
  • Conference paper
  • 822 Accesses

  • 5 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7213)

Abstract

We develop a behavioral theory for the untyped call-by-value λ-calculus extended with the delimited-control operators shift and reset. For this calculus, we discuss the possible observable behaviors and we define an applicative bisimilarity that characterizes contextual equivalence. We then compare the applicative bisimilarity and the CPS equivalence, a relation on terms often used in studies of control operators. In the process, we illustrate how bisimilarity can be used to prove equivalence of terms with delimited-control effects.

Keywords

  • Operator Shift
  • Behavioral Theory
  • Label Transition System
  • Reduction Rule
  • Lambda Calculus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Abramsky, S., Ong, C.-H.L.: Full abstraction in the lazy lambda calculus. Information and Computation 105, 159–267 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Ariola, Z.M., Herbelin, H., Sabry, A.: A type-theoretic foundation of delimited continuations. Higher-Order and Symbolic Computation 20(4), 403–429 (2007)

    CrossRef  MATH  Google Scholar 

  3. Bierman, G.: A Computational Interpretation of the λμ-Calculus. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 336–345. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  4. Biernacka, M., Biernacki, D.: Context-based proofs of termination for typed delimited-control operators. In: López-Fraguas, F.J. (ed.) PPDP 2009, pp. 289–300. ACM Press, Coimbra (2009)

    CrossRef  Google Scholar 

  5. Biernacka, M., Biernacki, D., Danvy, O.: An operational foundation for delimited continuations in the CPS hierarchy. Logical Methods in Computer Science 1(2:5), 1–39 (2005)

    MathSciNet  Google Scholar 

  6. Biernacki, D., Danvy, O., Millikin, K.: A dynamic continuation-passing style for dynamic delimited continuations. Technical Report BRICS RS-05-16, DAIMI, Department of Computer Science. Aarhus University, Aarhus, Denmark (May 2005)

    Google Scholar 

  7. Biernacki, D., Lenglet, S.: Applicative bisimulations for delimited-control operators (January 2012), http://arxiv.org/abs/1201.0874

  8. Danvy, O., Filinski, A.: Abstracting control. In: Wand, M. (ed.) LFP 1990, pp. 151–160. ACM Press, Nice (1990)

    CrossRef  Google Scholar 

  9. David, R., Py, W.: λμ-calculus and Böhm’s theorem. Journal of Symbolic Logic 66(1), 407–413 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Filinski, A.: Representing monads. In: Boehm, H.-J. (ed.) POPL 1994, pp. 446–457. ACM Press, Portland (1994)

    CrossRef  Google Scholar 

  11. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoretical Computer Science 228(1-2), 5–47 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Information and Computation 124(2), 103–112 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Kameyama, Y., Hasegawa, M.: A sound and complete axiomatization of delimited continuations. In: Shivers, O. (ed.) ICFP 2003. SIGPLAN Notices, vol. 38(9), pp. 177–188. ACM Press, Uppsala (2003)

    CrossRef  Google Scholar 

  14. Lassen, S.B.: Relational reasoning about contexts. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 91–135. Cambridge University Press (1998)

    Google Scholar 

  15. Lassen, S.B.: Eager normal form bisimulation. In: Panangaden, P. (ed.) LICS 2005, pp. 345–354. IEEE Computer Society Press, Chicago (2005)

    Google Scholar 

  16. Lassen, S.B.: Normal form simulation for McCarthy’s amb. In: Escardó, M., Jung, A., Mislove, M. (eds.) MFPS 2005. ENTCS, vol. 155, pp. 445–465. Elsevier Science Publishers, Birmingham (2005)

    Google Scholar 

  17. Lassen, S.B., Levy, P.B.: Typed normal form bisimulation for parametric polymorphism. In: Pfenning, F. (ed.) LICS 2008, pp. 341–352. IEEE Computer Society Press, Pittsburgh (2008)

    Google Scholar 

  18. Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s Method for Calculi with Passivation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 448–462. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  19. Merro, M., Biasi, C.: On the observational theory of the CPS-calculus: (extended abstract). ENTCS 158, 307–330 (2006)

    Google Scholar 

  20. Milner, R.: Fully abstract models of typed λ-calculi. Theoretical Computer Science 4(1), 1–22 (1977)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Morris, J.H.: Lambda Calculus Models of Programming Languages. PhD thesis, Massachusets Institute of Technology (1968)

    Google Scholar 

  22. Parigot, M.: λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS (LNAI), vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  23. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. In: Marcinkowski, J. (ed.) LICS 2007, pp. 293–302. IEEE Computer Society Press, Wroclaw (2007)

    Google Scholar 

  24. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press (2001)

    Google Scholar 

  25. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential control and state. In: Felleisen, M. (ed.) POPL 2007. SIGPLAN Notices, vol. 42(1), pp. 161–172. ACM Press, New York (2007)

    CrossRef  Google Scholar 

  26. Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis. University of Edinburgh, Edinburgh, Scotland (1997) ECS-LFCS-97-376

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Wrocław, Poland

    Dariusz Biernacki & Sergueï Lenglet

Authors
  1. Dariusz Biernacki
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sergueï Lenglet
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. IT University of Copenhagen, Rued Langgaards Vej 7, 2300, Copenhagen, Denmark

    Lars Birkedal

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biernacki, D., Lenglet, S. (2012). Applicative Bisimulations for Delimited-Control Operators. In: Birkedal, L. (eds) Foundations of Software Science and Computational Structures. FoSSaCS 2012. Lecture Notes in Computer Science, vol 7213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28729-9_8

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-28729-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28728-2

  • Online ISBN: 978-3-642-28729-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature