Applicative Bisimulations for Delimited-Control Operators

  • Dariusz Biernacki
  • Sergueï Lenglet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)


We develop a behavioral theory for the untyped call-by-value λ-calculus extended with the delimited-control operators shift and reset. For this calculus, we discuss the possible observable behaviors and we define an applicative bisimilarity that characterizes contextual equivalence. We then compare the applicative bisimilarity and the CPS equivalence, a relation on terms often used in studies of control operators. In the process, we illustrate how bisimilarity can be used to prove equivalence of terms with delimited-control effects.


Operator Shift Behavioral Theory Label Transition System Reduction Rule Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramsky, S., Ong, C.-H.L.: Full abstraction in the lazy lambda calculus. Information and Computation 105, 159–267 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ariola, Z.M., Herbelin, H., Sabry, A.: A type-theoretic foundation of delimited continuations. Higher-Order and Symbolic Computation 20(4), 403–429 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bierman, G.: A Computational Interpretation of the λμ-Calculus. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 336–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Biernacka, M., Biernacki, D.: Context-based proofs of termination for typed delimited-control operators. In: López-Fraguas, F.J. (ed.) PPDP 2009, pp. 289–300. ACM Press, Coimbra (2009)CrossRefGoogle Scholar
  5. 5.
    Biernacka, M., Biernacki, D., Danvy, O.: An operational foundation for delimited continuations in the CPS hierarchy. Logical Methods in Computer Science 1(2:5), 1–39 (2005)MathSciNetGoogle Scholar
  6. 6.
    Biernacki, D., Danvy, O., Millikin, K.: A dynamic continuation-passing style for dynamic delimited continuations. Technical Report BRICS RS-05-16, DAIMI, Department of Computer Science. Aarhus University, Aarhus, Denmark (May 2005)Google Scholar
  7. 7.
    Biernacki, D., Lenglet, S.: Applicative bisimulations for delimited-control operators (January 2012),
  8. 8.
    Danvy, O., Filinski, A.: Abstracting control. In: Wand, M. (ed.) LFP 1990, pp. 151–160. ACM Press, Nice (1990)CrossRefGoogle Scholar
  9. 9.
    David, R., Py, W.: λμ-calculus and Böhm’s theorem. Journal of Symbolic Logic 66(1), 407–413 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Filinski, A.: Representing monads. In: Boehm, H.-J. (ed.) POPL 1994, pp. 446–457. ACM Press, Portland (1994)CrossRefGoogle Scholar
  11. 11.
    Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoretical Computer Science 228(1-2), 5–47 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Information and Computation 124(2), 103–112 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kameyama, Y., Hasegawa, M.: A sound and complete axiomatization of delimited continuations. In: Shivers, O. (ed.) ICFP 2003. SIGPLAN Notices, vol. 38(9), pp. 177–188. ACM Press, Uppsala (2003)CrossRefGoogle Scholar
  14. 14.
    Lassen, S.B.: Relational reasoning about contexts. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 91–135. Cambridge University Press (1998)Google Scholar
  15. 15.
    Lassen, S.B.: Eager normal form bisimulation. In: Panangaden, P. (ed.) LICS 2005, pp. 345–354. IEEE Computer Society Press, Chicago (2005)Google Scholar
  16. 16.
    Lassen, S.B.: Normal form simulation for McCarthy’s amb. In: Escardó, M., Jung, A., Mislove, M. (eds.) MFPS 2005. ENTCS, vol. 155, pp. 445–465. Elsevier Science Publishers, Birmingham (2005)Google Scholar
  17. 17.
    Lassen, S.B., Levy, P.B.: Typed normal form bisimulation for parametric polymorphism. In: Pfenning, F. (ed.) LICS 2008, pp. 341–352. IEEE Computer Society Press, Pittsburgh (2008)Google Scholar
  18. 18.
    Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s Method for Calculi with Passivation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 448–462. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Merro, M., Biasi, C.: On the observational theory of the CPS-calculus: (extended abstract). ENTCS 158, 307–330 (2006)Google Scholar
  20. 20.
    Milner, R.: Fully abstract models of typed λ-calculi. Theoretical Computer Science 4(1), 1–22 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Morris, J.H.: Lambda Calculus Models of Programming Languages. PhD thesis, Massachusets Institute of Technology (1968)Google Scholar
  22. 22.
    Parigot, M.: λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS (LNAI), vol. 624, pp. 190–201. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  23. 23.
    Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. In: Marcinkowski, J. (ed.) LICS 2007, pp. 293–302. IEEE Computer Society Press, Wroclaw (2007)Google Scholar
  24. 24.
    Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press (2001)Google Scholar
  25. 25.
    Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential control and state. In: Felleisen, M. (ed.) POPL 2007. SIGPLAN Notices, vol. 42(1), pp. 161–172. ACM Press, New York (2007)CrossRefGoogle Scholar
  26. 26.
    Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis. University of Edinburgh, Edinburgh, Scotland (1997) ECS-LFCS-97-376Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dariusz Biernacki
    • 1
  • Sergueï Lenglet
    • 1
  1. 1.University of WrocławPoland

Personalised recommendations