Deriving Bisimulation Congruences for Conditional Reactive Systems

  • Mathias Hülsbusch
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)


We consider conditional reactive systems, a general abstract framework for rewriting, in which reactive systems à la Leifer and Milner are enriched with (nested) application conditions. We study the problem of deriving labelled transitions and bisimulation congruences from a reduction semantics. That is, we synthesize interactions with the environment in order to obtain a compositional semantics. Compared to earlier work we not only address the problem of deriving information about the (minimal) context needed to obtain a full left-hand side and thus be able to perform a reduction, but also generate conditions on the remaining context.


Model Transformation Application Condition Label Transition System Context Transition Compositional Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: Proc. of LICS 2006, pp. 69–80. IEEE (2006)Google Scholar
  2. 2.
    Bruggink, H.J.S., Cauderlier, R., König, B., Hülsbusch, M.: Conditional reactive systems. In: Proc. of FSTTCS 2011. LIPICS, vol. 13. Schloss Dagstuhl – Leibniz Center for Informatics (2011)Google Scholar
  3. 3.
    Ehrig, H., König, B.: Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), 1133–1163 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Engels, G., Kleppe, A., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: From UML Activities to TAAL - Towards Behaviour-Preserving Model Transformations. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 94–109. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fitting, M.: Bisimulations and boolean vectors. In: Advances in Modal Logic, vol. 4, pp. 1–29. World Scientific Publishing (2002)Google Scholar
  7. 7.
    Di Gianantonio, P., Honsell, F., Lenisa, M.: RPO, second-order contexts, and lambda-calculus. Logical Methods in Computer Science 5(3) (2009)Google Scholar
  8. 8.
    Grohmann, D., Miculan, M.: Reactive Systems Over Directed Bigraphs. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 380–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems relative to nested conditions. Mathematical Stuctures in Computer Science 19, 245–296 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138(2), 353–389 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: Showing Full Semantics Preservation in Model Transformation - A Comparison of Techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theoretical Informatics and Applications 39(3) (2005)Google Scholar
  13. 13.
    Guldstrand Larsen, K.: Context-Dependent Bisimulation between Processes. PhD thesis, University of Edinburgh (1986)Google Scholar
  14. 14.
    Leifer, J.J.: Operational congruences for reactive systems. PhD thesis, University of Cambridge Computer Laboratory (September 2001)Google Scholar
  15. 15.
    Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  17. 17.
    Pennemann, K.-H.: Development of Correct Graph Transformation Systems. PhD thesis, Universität Oldenburg (May 2009)Google Scholar
  18. 18.
    Rangel, G., König, B., Ehrig, H.: Deriving Bisimulation Congruences in the Presence of Negative Application Conditions. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Rensink, A.: Representing First-Order Logic Using Graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS 2005, pp. 311–320. IEEE (2005)Google Scholar
  21. 21.
    Sobociński, P.: Deriving process congruences from reaction rules. PhD thesis, Department of Computer Science. University of Aarhus (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mathias Hülsbusch
    • 1
  • Barbara König
    • 1
  1. 1.Abteilung für Informatik und Angewandte KognitionswissenschaftUniversität Duisburg-EssenGermany

Personalised recommendations