On Distributability of Petri Nets

(Extended Abstract)
  • Rob van Glabbeek
  • Ursula Goltz
  • Jens-Wolfhard Schicke-Uffmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)

Abstract

We formalise a general concept of distributed systems as sequential components interacting asynchronously. We define a corresponding class of Petri nets, called LSGA nets, and precisely characterise those system specifications which can be implemented as LSGA nets up to branching ST-bisimilarity with explicit divergence.

Keywords

Reversible Transition Asynchronous Communication Input Place Sequential Behaviour Sequential Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Badouel, E., Caillaud, B., Darondeau, P.: Distributing Finite Automata Through Petri Net Synthesis. Formal Aspects of Computing 13(6), 447–470 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Best, E., Darondeau, P.: Petri Net Distributability. In: Voronkov, A. (ed.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    El Hog Benzina, D., Haddad, S., Hennicker, R.: Process Refinement and Asynchronous Composition with Modalities. In: Sidorova, N., Serebrenik, A. (eds.) Proceedings of the 2nd International Workshop on Abstractions for Petri Nets and Other Models of Concurrency (APNOC 2010), Braga, Portugal (2010), http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
  4. 4.
    van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: Abstract Processes of Place/Transition Systems. Information Processing Letters 111(13), 626–633 (2011), doi:10.1016/j.ipl.2011.03.013MathSciNetCrossRefGoogle Scholar
  5. 5.
    van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: On Synchronous and Asynchronous Interaction in Distributed Systems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 16–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    van Glabbeek, R.J.: Goltz U J.-W. Schicke-Uffmann On Distributability of Petri Nets. Technical Report 2011-10, TU Braunschweig (2011) Full version of this paper (to appear), http://theory.stanford.edu/~rvg/abstracts.html#95
  7. 7.
    van Glabbeek, R.J., Vaandrager, F.W.: Petri Net Models for Algebraic Theories of Concurrency (Extended Abstract). In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  8. 8.
    van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM 43(3), 555–600 (1996), doi:10.1145/233551.233556MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hopkins, R.P.: Distributable Nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp. 161–187. Springer, Heidelberg (1991), doi:10.1007/BFb0019974CrossRefGoogle Scholar
  10. 10.
    Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  11. 11.
    Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating processes. Acta Informatica 23, 9–66 (1986), doi:10.1007/BF00268075MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Peters, K., Schicke, J.-W., Nestmann, U.: Synchrony vs Causality in the Asynchronous Pi-Calculus. In: Luttik, B., Valencia, F. (eds.) Proceedings 18th International Workshop on Expressiveness in Concurrency, Aachen, Germany, September 5. Electronic Proceedings in Theoretical Computer Science, vol. 64, pp. 89–103 (2011), doi:10.4204/EPTCS.64.7Google Scholar
  13. 13.
    Reisig, W.: Deterministic Buffer Synchronization of Sequential Processes. Acta Informatica 18, 115–134 (1982), doi:10.1007/BF00264434MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schicke, J.-W., Peters, K., Goltz, U.: Synchrony vs. Causality in Asynchronous Petri Nets. In: Luttik, B., Valencia, F. (eds.) Proceedings 18th International Workshop on Expressiveness in Concurrency, Aachen, Germany, September 5. Electronic Proceedings in Theoretical Computer Science, vol. 64, pp. 119–131 (2011), doi:10.4204/EPTCS.64.9Google Scholar
  15. 15.
    Vogler, W.: Bisimulation and Action Refinement. Theor. Comput. Sci. 114(1), 173–200 (1993), doi:10.1016/0304-3975(93)90157-OMathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rob van Glabbeek
    • 1
    • 2
  • Ursula Goltz
    • 3
  • Jens-Wolfhard Schicke-Uffmann
    • 3
  1. 1.NICTASydneyAustralia
  2. 2.School of Computer Sc. and EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.Institute for Programming and Reactive SystemsTU BraunschweigGermany

Personalised recommendations