Robustness of Structurally Equivalent Concurrent Parity Games

  • Krishnendu Chatterjee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)


We consider two-player stochastic games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with ω-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity games with respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the supports of the transition functions are the same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally, we show that the value continuity property breaks without the structural equivalence assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal).


  1. 1.
    Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Specifications of Reactive Systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. CoRR 1107.2009 (2011)Google Scholar
  4. 4.
    Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of quantitative concurrent parity games. In: SODA 2006, pp. 678–687. ACM-SIAM (2004)Google Scholar
  5. 5.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. In: LICS 2004, pp. 160–169. IEEE (2004)Google Scholar
  6. 6.
    Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 121–130. SIAM (2004)Google Scholar
  7. 7.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)Google Scholar
  8. 8.
    Condon, A.: The complexity of stochastic games. Information and Computation 96(2), 203–224 (1992)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis. Stanford University (1997)Google Scholar
  11. 11.
    de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS 2000, pp. 141–154. IEEE (2000)Google Scholar
  12. 12.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the Future in Systems Theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: STOC 2001, pp. 675–683. ACM Press (2001)Google Scholar
  14. 14.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press (1970)Google Scholar
  15. 15.
    Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-independent Circuits. The MIT Press (1989)Google Scholar
  16. 16.
    Etessami, K., Yannakakis, M.: Recursive Concurrent Stochastic Games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 324–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)MATHGoogle Scholar
  18. 18.
    Friedlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  19. 19.
    Gimbert, H., Zielonka, W.: Discounting infinite games but how and why? Electr. Notes Theor. Comput. Sci. 119(1), 3–9 (2005)CrossRefGoogle Scholar
  20. 20.
    Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)MATHCrossRefGoogle Scholar
  21. 21.
    Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4), 1565–1581 (1998)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM Press (1989)Google Scholar
  23. 23.
    Raghavan, T.E.S., Filar, J.A.: Algorithms for stochastic games — a survey. ZOR — Methods and Models of Op. Res. 35, 437–472 (1991)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes. SIAM Journal of Control and Optimization 25(1), 206–230 (1987)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. USA 39, 1095–1100 (1953)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Solan, E.: Continuity of the value of competitive Markov decision processes. Journal of Theoretical Probability 16, 831–845 (2003)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier (1990)Google Scholar
  28. 28.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: FOCS 1985, pp. 327–338. IEEE Computer Society Press (1985)Google Scholar
  29. 29.
    Zielonka, W.: Perfect-Information Stochastic Parity Games. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 499–513. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  1. 1.IST Austria (Institute of Science and Technology Austria)Austria

Personalised recommendations