On Nominal Regular Languages with Binders

  • Alexander Kurz
  • Tomoyuki Suzuki
  • Emilio Tuosto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)


We investigate regular languages on infinite alphabets where words may contain binders on names. To this end, classical regular expressions and automata are extended with binders. We prove the equivalence between finite automata on binders and regular expressions with binders and investigate closure properties and complementation of regular languages with binders.


Regular Expression Regular Language Tree Automaton Correct Execution Deadlock State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aboul-Hosn, K., Kozen, D.: Local variable scoping and kleene algebra with tests. J. Log. Algebr. Program. 76(1), 3–17 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)Google Scholar
  3. 3.
    Arbib, M.A., Manes, E.G.: Machines in a category: An expository introduction. SIAM Review 16(163-192), 285–302 (1974)MathSciNetGoogle Scholar
  4. 4.
    Bojanczyk, M.: Data monoids. In: STACS, pp. 105–116 (2011)Google Scholar
  5. 5.
    Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: IEEE Symposium on Logic in Computer Science, pp. 355–364 (2011)Google Scholar
  6. 6.
    Ciancia, V.: Nominal Sets, Accessible Functors and Final Coalgebras for Named Sets. PhD thesis, Dipartimento di Informatica, Università di Pisa (2008) forthcomingGoogle Scholar
  7. 7.
    Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation of names. Inf. Comput. 208(12), 1349–1367 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alphabets. Technical Report CS-09-003, Leicester (2009)Google Scholar
  9. 9.
    Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Jewels are Forever, pp. 72–83 (1999)Google Scholar
  10. 10.
    Fernández, M., Gabbay, M.: Nominal rewriting. Inf. Comput. 205(6), 917–965 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fiore, M.P., Staton, S.: Comparing operational models of name-passing process calculi. Inf. Comput. 204(4), 524–560 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gabbay, M., Ciancia, V.: Freshness and Name-Restriction in Sets of Traces with Names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In: Symbolic on Logics in Comput Science, pp. 214–224 (1999)Google Scholar
  14. 14.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras (pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3), 283–304 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison Wesley (2000)Google Scholar
  16. 16.
    Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kurz, A., Suzuki, T., Tuosto, E.: Towards nominal formal languages. CoRR, abs/1102.3174 (2011)Google Scholar
  18. 18.
    Montanari, U., Pistore, M.: π-Calculus, Structured Coalgebras, and Minimal HD-Automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 569–578. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Pistore, M.: History Dependent Automata. PhD thesis, Dip. di Informatica - Pisa (1999)Google Scholar
  20. 20.
    Pitts, A., Stark, I.: Observable Properties of Higher Order Functions that Dynamically Create Local Names, or What’s New? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  21. 21.
    Pouillard, N., Pottier, F.: A fresh look at programming with names and binders. In: Proceeding of the 15th ACM SIGPLAN International Conference on Functional Programming, pp. 217–228 (2010)Google Scholar
  22. 22.
    Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Shinwell, M., Pitts, A., Gabbay, M.: Freshml: programming with binders made simple. In: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, pp. 263–274 (2003)Google Scholar
  24. 24.
    Stirling, C.: Dependency Tree Automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 92–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Stone, M.H.: Postulates for boolean algebras and generalized boolean algebras. American Journal of Mathematics 57(4), 703–732 (1935)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tzevelekos, N.: Fresh-Register Automata. In: Symposium on Principles of Programming Languages, pp. 295–306. ACM (2011)Google Scholar
  27. 27.
    Weikum, G., Vossen, G.: Transactional information systems: theory, algorithms, and the practice of concurrency control and recovery. Morgan Kaufmann (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Kurz
    • 1
  • Tomoyuki Suzuki
    • 1
  • Emilio Tuosto
    • 1
  1. 1.Department of Computer ScienceUniversity of LeicesterUK

Personalised recommendations