Advertisement

Revisiting Trace and Testing Equivalences for Nondeterministic and Probabilistic Processes

  • Marco Bernardo
  • Rocco De Nicola
  • Michele Loreti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)

Abstract

One of the most studied extensions of testing theory to nondeterministic and probabilistic processes yields unrealistic probabilities estimations that give rise to two anomalies. First, probabilistic testing equivalence does not imply probabilistic trace equivalence. Second, probabilistic testing equivalence differentiates processes that perform the same sequence of actions with the same probability but make internal choices in different moments and thus, when applied to processes without probabilities, does not coincide with classical testing equivalence. In this paper, new versions of probabilistic trace and testing equivalences are presented for nondeterministic and probabilistic processes that resolve the two anomalies. Instead of focussing only on suprema and infima of the set of success probabilities of resolutions of interaction systems, our testing equivalence matches all the resolutions on the basis of the success probabilities of their identically labeled computations. A simple spectrum is provided to relate the new relations with existing ones. It is also shown that, with our approach, the standard probabilistic testing equivalences for generative and reactive probabilistic processes can be retrieved.

Keywords

Probabilistic Failure Success Probability Test Equivalence Probabilistic Choice Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramsky, S.: Observational equivalence as a testing equivalence. Theoretical Computer Science 53, 225–241 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brookes, S., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31, 560–599 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Christoff, I.: Testing Equivalences and Fully Abstract Models for Probabilistic Processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 126–140. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154, 93–148 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. LMCS 4(4), 1–33 (2008)Google Scholar
  7. 7.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press (1970)Google Scholar
  8. 8.
    Georgievska, S., Andova, S.: Retaining the Probabilities in Probabilistic Testing Theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 79–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proc. of RTSS 1990, pp. 278–287. IEEE-CS Press (1990)Google Scholar
  10. 10.
    Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes. In: Proc. of LICS 1995, pp. 431–441. IEEE-CS Press (1995)Google Scholar
  11. 11.
    Kwiatkowska, M.Z., Norman, G.: A testing equivalence for reactive probabilistic processes. In: Proc. of EXPRESS 1998. ENTCS, vol. 16(2), pp. 114–132 (1998)Google Scholar
  12. 12.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis (1995)Google Scholar
  13. 13.
    Segala, R.: A Compositional Trace-Based Semantics for Probabilistic Automata. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Segala, R.: Testing Probabilistic Automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121, 59–80 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. of FOCS 1985, pp. 327–338. IEEE-CS Press (1985)Google Scholar
  17. 17.
    Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proc. of PSTV 1992, pp. 47–61. North-Holland (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Bernardo
    • 1
  • Rocco De Nicola
    • 2
  • Michele Loreti
    • 3
  1. 1.Dipartimento di Scienze di Base e FondamentiUniversità di UrbinoItaly
  2. 2.IMTIstituto Alti Studi LuccaItaly
  3. 3.Dipartimento di Sistemi e InformaticaUniversità di FirenzeItaly

Personalised recommendations