Advertisement

Querying UML Class Diagrams

  • Andrea Calì
  • Georg Gottlob
  • Giorgio Orsi
  • Andreas Pieris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7213)

Abstract

UML Class Diagrams (UCDs) are the best known class-based formalism for conceptual modeling. They are used by software engineers to model the intensional structure of a system in terms of classes, attributes and operations, and to express constraints that must hold for every instance of the system. Reasoning over UCDs is of paramount importance in design, validation, maintenance and system analysis; however, for medium and large software projects, reasoning over UCDs may be impractical. Query answering, in particular, can be used to verify whether a (possibly incomplete) instance of the system modeled by the UCD, i.e., a snapshot, enjoys a certain property. In this work, we study the problem of querying UCD instances, and we relate it to query answering under guarded Datalog±, that is, a powerful Datalog-based language for ontological modeling. We present an expressive and meaningful class of UCDs, named Lean UCD, under which conjunctive query answering is tractable in the size of the instances.

Keywords

Description Logic Object Constraint Language Conjunctive Query Query Answering Negative Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate logic. J. Philosophical Logic 27, 217–274 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Artale, A., Calvanese, D., Ibáñez-García, Y.A.: Full Satisfiability of UML Class Diagrams. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 317–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artificial Intelligence Res. 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables: Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. In: Proc. of LICS, pp. 1–10 (2010)Google Scholar
  6. 6.
    Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  7. 7.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1-2), 70–118 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using constraint programming. In: Proc. of ICSTW, pp. 73–80 (2008)Google Scholar
  9. 9.
    Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite Model Reasoning on UML Class Diagrams Via Constraint Programming. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. of KR, pp. 70–80 (2008); Extended version available from the authorsGoogle Scholar
  11. 11.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. In: Proc. of PODS, pp. 77–86 (2009); To appear in the J. of Web SemanticsGoogle Scholar
  12. 12.
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: Proc. of LICS, pp. 228–242 (2010)Google Scholar
  13. 13.
    Calì, A., Lembo, D., Rosati, R.: On the decidability and complexity of query answering over inconsistent and incomplete databases. In: Proc. of PODS, pp. 260–271 (2003)Google Scholar
  14. 14.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)zbMATHCrossRefGoogle Scholar
  15. 15.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. PODS, pp. 149–158 (1998)Google Scholar
  16. 16.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and functional dependencies in description logics. In: Proc. of IJCAI, pp. 155–160 (2001)Google Scholar
  17. 17.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proc. of KR, pp. 260–270 (2006)Google Scholar
  18. 18.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Conceptual Modeling for Data Integration. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 173–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. of STOCS, pp. 77–90 (1977)Google Scholar
  20. 20.
    Chikofsky, E.J., Cross II, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE Software 7(1), 13–17 (1990)CrossRefGoogle Scholar
  21. 21.
    Chimia-Opoka, J., Felderer, M., Lenz, C., Lange, C.: Querying UML models using OCL and Prolog: A performance study. In: Proc. of ICSTW, pp. 81–88 (2008)Google Scholar
  22. 22.
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisisted. In: Proc. of PODS, pp. 149–158 (2008)Google Scholar
  23. 23.
    Donini, F.M., Massacci, F.: EXPTIME tableaux for \(\mathcal{ALC}\). Artif. Intell. 124, 87–138 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An Overview of RoZ: A Tool for Integrating UML and Z Specifications. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 417–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. System Sci. 18(2), 194–211 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  28. 28.
    Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environment for validating UML and OCL. Sci. of Computer Progr. 69(1-3), 27–34 (2007)zbMATHCrossRefGoogle Scholar
  29. 29.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted UML class diagrams. Theor. Comput. Sci. 411(2), 301–323 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and guardedness. In: Proc. of IJCAI, pp. 963–968 (2011)Google Scholar
  32. 32.
    Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-relationship schemata. Inf. Syst. 15(4), 453–461 (1990)CrossRefGoogle Scholar
  33. 33.
    Lutz, C.: The Complexity of Conjunctive Query Answering in Expressive Description Logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)CrossRefGoogle Scholar
  35. 35.
    Maraee, A., Balaban, M.: Efficient Reasoning about Finite Satisfiability of UML Class Diagrams with Constrained Generalization Sets. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 17–31. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Constraints. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 497–512. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas with OCL constraints. ACM Trans. Softw. Eng. Meth. 21(2) (2011) (in press)Google Scholar
  38. 38.
    Queralt, A., Teniente, E., Artale, A., Calvanese, D.: OCL-Lite: Finite reasoning on UML/OCL conceptual schemas. Data and Know. Eng. (2011) (in press)Google Scholar
  39. 39.
    Richters, M., Gogolla, M.: OCL: Syntax, Semantics, and Tools. In: Clark, A., Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 447–450. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans. Softw. Eng. Meth. 15, 92–122 (2006)CrossRefGoogle Scholar
  41. 41.
    Störrle, H.: A PROLOG-based approach to representing and querying software engineering models. In: Proc. of VLL, pp. 71–83 (2007)Google Scholar
  42. 42.
    Vardi, M.Y.: The complexity of relational query languages. In: Proc. of STOC, pp. 137–146 (1982)Google Scholar
  43. 43.
    Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS, pp. 266–276 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Calì
    • 2
    • 3
  • Georg Gottlob
    • 1
    • 3
    • 4
  • Giorgio Orsi
    • 1
    • 4
  • Andreas Pieris
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK
  2. 2.Dept. of Computer Science and Inf. SystemsBirkbeck University of LondonUK
  3. 3.Oxford-Man Institute of Quantitative FinanceUniversity of OxfordUK
  4. 4.Institute for the Future of ComputingOxford Martin SchoolUK

Personalised recommendations