Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

  • C. S. Liu
  • X. Shao
  • T. C. Liu
  • J. J. Su
  • M. Q. He
  • B. Eliasson
  • V. K. Tripathi
  • G. Dudnikova
  • R. Z. Sagdeev
  • S. Wilks
  • C. D. Chen
  • Z. M. Sheng
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)


Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh–Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh–Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50–250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.


Proton Beam Proton Therapy Ponderomotive Force Energetic Proton Particle Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank helpful discussions with A. Ting (Navel Research Laboratory) and J. W. Wong (John Hopkins University).


  1. 1.
    T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267–70 (1979)Google Scholar
  2. 2.
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, A laserplasma accelerator producing monoenergetic electron beams Nature 431, 541–4 (2004)Google Scholar
  3. 3.
    C.G.R. Geddes, C.S. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding Nature 431, 538–41 (2004)Google Scholar
  4. 4.
    S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J.Y. Langle, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser plasma interactions Nature 431, 535–8 (2004)Google Scholar
  5. 5.
    S. Kneip, S.R. Nagel, S.F. Martins, S.P.D. Mangles, C. Bellei, O. Chekhlov, R.J. Clarke, N. Delerue, E.J. Divall, G. Doucas, K. Ertel, F. Fiuza, R. Fonseca, P. Foster, S.J. Hawkes, C.J. Hooker, K. Krushelnick, W.B. Mori, C.A.J. Palmer, K. Ta Phuoc, P.P. Rajeev, J. Schreiber, M.J.V. Streeter, D. Urner, J. Vieira, L.O. Silva, Z. Najmudin, Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse Phys. Rev. Lett. 103, 035002 (2009)Google Scholar
  6. 6.
    W.P. Leemans, B. Nagler, A.J. Gonsalves, C.S. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator Nat. Phys. 2, 696–9 (2006)Google Scholar
  7. 7.
    B. Eliasson, C.S. Liu, X. Shao, R.Z. Sagdeev, P.K. Shukla, Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil New J. Phys. 11 073006 (2009)Google Scholar
  8. 8.
    T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime Phys. Rev. Lett. 92, 175003 (2004)Google Scholar
  9. 9.
    A.A. Gonoskov, A.V. Korzhimanov, V.I. Eremin, A.V. Kim, A.M. Sergeev, Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. Phys. Rev. Lett 102 184801 (2009)Google Scholar
  10. 10.
    A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B.M. Hegelich, X.Q. Yan, T. Tajima, P.V. Nickles, W. Sandner, D. Habs, Radiation pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009)Google Scholar
  11. 11.
    O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Monoenergetic ion beams from ultrathin foilsirradiated by ultrahigh-contrast circularly polarized laser pulses Phys. Rev. ST Accel. Beams 1(1), 031301 (2008)Google Scholar
  12. 12.
    T.V. Liseykina, M. Borghesi, A. Macchi, S. Tuveri, Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Contr. Fusion 50, 124033 (2008)Google Scholar
  13. 13.
    C.S. Liu, V.K. Tripathi, and X. Shao, Laser Acceleration of Monoenergetic Protons Trapped in Moving Double Layer from Thin Foil, ed. by P.K. Shukla, B. Eliasson, L. Stenflo. Frontiers in Modern Plasma Physics: 2008 ICTP International Workshop. AIP Conference Proceedings vol 1061, pp. 246–254, 2008Google Scholar
  14. 14.
    A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021 (2009)Google Scholar
  15. 15.
    V.K. Tripathi, C.S. Liu, X. Shao, B. Eliasson, R.Z. Sagdeev, Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Contr. Fusion 51, 024014 (2009)Google Scholar
  16. 16.
    X.Q. Yan, C. Lin, Z.M. Sheng, Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime Phys. Rev. Lett. 100, 135003 (2008)Google Scholar
  17. 17.
    J. Fuchs, C.A. Cecchetti, M. Borghesi, T. Grismayer, E. d’Humières, P. Antici, S. Atzeni, P. Mora, A. Pipahl, L. Romagnani, A. Schiavi, Y. Sentoku, T. Toncian, P. Audebert, O. Willi, Laser-foil acceleration of high-energy protons in small-scale plasma gradients Phys. Rev. Lett. 99 015002 (2007)Google Scholar
  18. 18.
    B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze and J.C. Fernandez, Laser acceleration of quasi-monoenergetic MeV ion beams Nature 439, 441–4 (2006)Google Scholar
  19. 19.
    P. Mora, Laser driven ion acceleration. AIP Conf. Proc. 920, 98–117 (2007)Google Scholar
  20. 20.
    A. Pukhov, Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 3562 (2001)Google Scholar
  21. 21.
    L. Robson, P.T. Simpson, R.J. Clarke, K.W.D. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.G. Wahlström, M. Zepf, P. McKenna, Scaling of proton acceleration driven by petawatt–laser–plasma interactions Nat. Phys. 3 58–62 (2007)Google Scholar
  22. 22.
    H. Schwoever, S. Pfotenhauer, O. Jäckel, K.U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K.W.D. Ledingham, T. Esirkepov, Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets Nature 439, 445–8 (2006)Google Scholar
  23. 23.
    S. Ter-Avetisyan, M. Schnürer, P.V. Nickles, M. Kalashnikov, E. Risse, T. Sokollik, W. Sandner, A. Andreev, V. Tikhonchuk, Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. Phys. Rev. Lett. 96, 145006 (2006)Google Scholar
  24. 24.
    S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Energetic proton generation in ultra-intense lasersolid interactions Phys. Plasmas 8, 542–9 (2001)Google Scholar
  25. 25.
    L. Yin, B.J. Albright, B.M. Hegelich, K.J. Bowers, K.A. Flippo, T.J.T. Kwan, J.C. Fernández, Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin foil Phys. Plasmas 14, 056706 (2007)Google Scholar
  26. 26.
    M. Chen, A. Pukhov, T.P. Yu, Z.M. Sheng, Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse. Phys. Rev. Lett. 103, 024801 (2009)Google Scholar
  27. 27.
    B. Qiao, M. Zepf, M. Borghesi, M. Geissler, Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses Phys. Rev. Lett. 102, 145002 (2009)Google Scholar
  28. 28.
    B. Qiao, M. Zepf, M. Borghesi, B. Dromey, M. Geissler, A. Karmakar, P. Gibbon, Radiationpressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime Phys. Rev. Lett. 105, 155002 (2010)Google Scholar
  29. 29.
    C.S. Liu, X. Shao, B. Eliasson, T.C. Liu, V. Tripathi, G. Dudnikova, R.Z. Sagdeev, Laser acceleration of quasi-monoenergetic protons via radiation pressure driven thin foil, in modern challenges in nonlinear plasma physics. AIP Conf. Proc. 1320, 104–110 (2011a)Google Scholar
  30. 30.
    T.C. Liu, X. Shao, C.S. Liu, J.J. Su, B. Eliasson, V.K. Tripathi, G. Dudnikova, R.Z. Sagdeev, Energetics and energy scaling of quasi-monoenergetic ions in laser radiation pressure acceleration, Phys. Plasmas 18, 123105 (2011)Google Scholar
  31. 31.
    B. Jones, The case for particle therapy Br. J. Radiol. 78, 1–8 (2005)Google Scholar
  32. 32.
    A.J. Palmer Charlotte, N.P. Dover, I. Pogorelsky, M. Babzien, G.I. Dudnikova, M. Ispiriyan, M.N. Polyanskiy, J. Schreiber, P. Shkolnikov, V. Yakimenko, Z. Najmudin, Monoenergetic proton beams accelerated by a radiation pressure driven shock Phys. Rev. Lett. 106, 014801 (2011)Google Scholar
  33. 33.
    K.W.D. Ledingham, W. Galster, R. Sauerbrey, Laser-driven proton oncology—a unique new cancer therapy?. Br. J. Radiol. 80, 855–8 (2007)Google Scholar
  34. 34.
    C.M. Ma, I. Veltchev, E. Fourkal, J.S. Li, W. Luo, J. Fan, T. Lin, A. Pollack, Development of a laser-driven proton accelerator for cancer therapy. Laser Phys. 16, 639–646 (2006)Google Scholar
  35. 35.
    F. Pegoraro, S.V. Bulanov, Photon bubbles and ion acceleration in a plasma dominated the radiation pressure of an electromagnetic pulse. Phys. Rev. Lett. 99, 065002 (2007)Google Scholar
  36. 36.
    M.Q. He, X. Shao, C.S. Liu, T.C. Liu, J.J. Su, G. Dudnikova, R.Z. Sagdeev, Z.M. Sheng, Quasi-monoenergetic Protons Accelerated by Laser Radiation Pressure and Shocks in Thin Gaseous Targets. submitted to Phys. Plasmas (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. S. Liu
    • 1
  • X. Shao
    • 1
  • T. C. Liu
    • 1
  • J. J. Su
    • 1
  • M. Q. He
    • 1
  • B. Eliasson
    • 1
    • 3
  • V. K. Tripathi
    • 1
    • 4
  • G. Dudnikova
    • 1
  • R. Z. Sagdeev
    • 1
  • S. Wilks
    • 5
  • C. D. Chen
    • 5
  • Z. M. Sheng
    • 2
    • 6
  1. 1.East-West Space Science CenterUniversity of MarylandCollege ParkUSA
  2. 2.Department of PhysicsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.Ruhr-University BochumBochumGermany
  4. 4.Indian Institute of TechnologyNew DelhiIndia
  5. 5.Lawrence Livermore National LaboratoryLivermoreUSA
  6. 6. Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, CASBeijingPeople’s Republic of China

Personalised recommendations